Show simple item record

Model selection for DCE‐T1 studies in glioblastoma

dc.contributor.authorBagher‐ebadian, Hassanen_US
dc.contributor.authorJain, Rajanen_US
dc.contributor.authorNejad‐davarani, Siamak P.en_US
dc.contributor.authorMikkelsen, Tomen_US
dc.contributor.authorLu, Meien_US
dc.contributor.authorJiang, Quanen_US
dc.contributor.authorScarpace, Lisaen_US
dc.contributor.authorArbab, Ali S.en_US
dc.contributor.authorNarang, Jayanten_US
dc.contributor.authorSoltanian‐zadeh, Hamiden_US
dc.contributor.authorPaudyal, Rameshen_US
dc.contributor.authorEwing, James. R.en_US
dc.date.accessioned2012-06-15T14:32:33Z
dc.date.available2013-09-03T15:38:26Zen_US
dc.date.issued2012-07en_US
dc.identifier.citationBagher‐ebadian, Hassan ; Jain, Rajan; Nejad‐davarani, Siamak P. ; Mikkelsen, Tom; Lu, Mei; Jiang, Quan; Scarpace, Lisa; Arbab, Ali S.; Narang, Jayant; Soltanian‐zadeh, Hamid ; Paudyal, Ramesh; Ewing, James. R. (2012). "Model selection for DCEâ T1 studies in glioblastoma." Magnetic Resonance in Medicine 68(1): 241-251. <http://hdl.handle.net/2027.42/91323>en_US
dc.identifier.issn0740-3194en_US
dc.identifier.issn1522-2594en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91323
dc.description.abstractDynamic contrast enhanced T 1 ‐weighted MRI using the contrast agent gadopentetate dimeglumine (Gd‐DTPA) was performed on 10 patients with glioblastoma. Nested models with as many as three parameters were used to estimate plasma volume or plasma volume and forward vascular transfer constant ( K trans ) and the reverse vascular transfer constant ( k ep ). These constituted models 1, 2, and 3, respectively. Model 1 predominated in normal nonleaky brain tissue, showing little or no leakage of contrast agent. Model 3 predominated in regions associated with aggressive portions of the tumor, and model 2 bordered model 3 regions, showing leakage at reduced rates. In the patient sample, v p was about four times that of white matter in the enhancing part of the tumor. K trans varied by a factor of 10 between the model 2 (1.9 ↔ 10 −3 min −1 ) and model 3 regions (1.9 ↔ 10 −2 min −1 ). The mean calculated interstitial space (model 3) was 5.5%. In model 3 regions, excellent curve fits were obtained to summarize concentration‐time data (mean R 2 = 0.99). We conclude that the three parameters of the standard model are sufficient to fit dynamic contrast enhanced T 1 data in glioblastoma under the conditions of the experiment. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherIndicator Pharmacokineticsen_US
dc.subject.otherGliomaen_US
dc.subject.otherDCE MRIen_US
dc.subject.otherVascular Permeabilityen_US
dc.titleModel selection for DCE‐T1 studies in glioblastomaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherPh.D., Neurology NMR Facility, E&R B126, Henry Ford Hospital, 2799 W. Grand Blvd., Detroit, MI 48202en_US
dc.contributor.affiliationotherDepartment of Neurology, Henry Ford Hospital, Detroit, Michigan, USAen_US
dc.contributor.affiliationotherDepartment of Physics, Oakland University, Rochester, Michigan, USAen_US
dc.contributor.affiliationotherDepartment of Radiology, Henry Ford Hospital, Detroit, Michigan, USAen_US
dc.contributor.affiliationotherDepartment of Radiology, Wayne State University Medical School, Detroit, Michigan, USAen_US
dc.contributor.affiliationotherDepartment of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USAen_US
dc.contributor.affiliationotherDepartment of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan, USAen_US
dc.contributor.affiliationotherDepartment of Neurology, Wayne State University, Detroit, Michigan, USAen_US
dc.identifier.pmid22127934en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91323/1/23211_ftp.pdf
dc.identifier.doi10.1002/mrm.23211en_US
dc.identifier.sourceMagnetic Resonance in Medicineen_US
dc.identifier.citedreferenceHenderson E, Rutt BK, Lee TY. Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging 1998; 16: 1057 – 1073.en_US
dc.identifier.citedreferenceLi X, Rooney WD, Varallyay CG, Gahramanov S, Muldoon LL, Goodman JA, Tagge IJ, Selzer AH, Pike MM, Neuwelt EA, Springer CS Jr. Dynamic‐contrast‐enhanced‐MRI with extravasating contrast reagent: rat cerebral glioma blood volume determination. J Magn Reson 2010; 206: 190 – 199.en_US
dc.identifier.citedreferenceLi X, Rooney WD, Springer CS Jr. A unified magnetic resonance imaging pharmacokinetic theory: intravascular and extracellular contrast reagents. Magn Reson Med 2005; 54: 1351 – 1359.en_US
dc.identifier.citedreferenceSourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K. Quantification of cerebral blood flow, cerebral blood volume, and blood‐brain‐barrier leakage with DCE‐MRI. Magn Reson Med 2009; 62: 205 – 217.en_US
dc.identifier.citedreferenceEwing JR, Brown SL, Lu M, Panda S, Ding G, Knight RA, Cao Y, Jiang Q, Nagaraja TN, Churchman JL, Fenstermacher JD. Model selection in magnetic resonance imaging measurements of vascular permeability: gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab 2006; 26: 310 – 320.en_US
dc.identifier.citedreferencePatlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood‐to‐brain transfer constants from multiple‐time uptake data. J Cereb Blood Flow Metab 1983; 3: 1 – 7.en_US
dc.identifier.citedreferencePatlak C, Blasberg R. Graphical evaluation of blood to brain transfer constants from multiple time up take data. Generalizations. J Cereb Blood Flow Metab 1985; 5: 584 – 590.en_US
dc.identifier.citedreferenceTofts P, Kermode A. Measurement of the blood‐brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991; 17: 357 – 367.en_US
dc.identifier.citedreferenceTofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM. Estimating kinetic parameters from dynamic contrast‐enhanced T(1)‐weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999; 10: 223 – 232.en_US
dc.identifier.citedreferenceBrix G, Zwick S, Kiessling F, Griebel J. Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel inference and parameter identifiability. Med Phys 2009; 36: 2923 – 2933.en_US
dc.identifier.citedreferenceYankeelov TE, Rooney WD, Li X, Springer CS. Variation of the relaxographic Óshutter‐speedÓ for transcytoliemmal water exchange affects the CR bolus‐tracking curve shape. Magn Reson Med 2003; 50: 1151 – 1169.en_US
dc.identifier.citedreferenceLandis CS, Li X, Telang FW, Molina PE, Palyka I, Vetek G, Springer CS. Equilibrium transcytolemmal water‐exchange kinetics in skeletal muscle in vivo. Magn Reson Med 1999; 42: 467 – 478.en_US
dc.identifier.citedreferenceLi KL, Zhu XP, Waterton J, Jackson A. Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. J Magn Reson Imaging 2000; 12: 347 – 357.en_US
dc.identifier.citedreferenceBates D, Watts D. Nonlinear regression analysis and its application. New York: Wiley; 1988.en_US
dc.identifier.citedreferenceMarquardt D. An algorithm for least‐squares estimation on nonlinear parameters. J Soc Ind Appl Math 1963; 11: 431 – 441.en_US
dc.identifier.citedreferenceLeenders K, Perani D, Lammertsma A, Heather J, Buckingham P, Healy M, Gibbs J, Wise J, Hatazawa J, Herold S, Beany R, Brooks D, Spinks T, Rhodes C, Frackowiak S, Jones T. Cerebral blood flow, blood volume and oxygen utilization. Brain 1990; 113: 27 – 47.en_US
dc.identifier.citedreferenceJohnson G, Wetzel SG, Cha S, Babb J, Tofts PS. Measuring blood volume and vascular transfer constant from dynamic, T(2)*‐weighted contrast‐enhanced MRI. Magn Reson Med 2004; 51: 961 – 968.en_US
dc.identifier.citedreferenceDeoni SC, Peters TM, Rutt BK. High‐resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005; 53: 237 – 241.en_US
dc.identifier.citedreferenceGjedde A. Dark origins of the Patlak‐Gjedde‐Blasberg‐Fenstermacher‐Rutland‐Rehling Plot. Nucl Med Commun 1997; 3: 274 – 275.en_US
dc.identifier.citedreferenceFahraeus R, LIndqvist T. The viscosity of the blood in narrow capillary tubes. Am J Physiol 1931; 96: 562 – 568.en_US
dc.identifier.citedreferenceDittmer DS. Blood and other body fluids, 1st ed. Washington, D.C.: Federation of American Societies for Experimental Biology; 1963. 540 p.en_US
dc.identifier.citedreferenceJohnson JA, Wilson T. A model for capillary exchange. Am J Physiol 1966; 210: 1299 – 1303.en_US
dc.identifier.citedreferenceCrone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand 1963; 58: 292 – 305.en_US
dc.identifier.citedreferenceRenkin EM. Exchangeability of tissue potassium in skeletal muscle. Am J Physiol 1959; 6: 1211 – 1215.en_US
dc.identifier.citedreferenceMood AM, Graybill FA, Boes DC. Introduction to the theory of statistics. New York: McGraw‐Hill Co.; 1963.en_US
dc.identifier.citedreferenceHuang W, Li X, Morris EA, Tudorica LA, Seshan VE, Rooney WD, Tagge I, Wang Y, Xu J, Springer CS. The magnetic resonance shutter speed discriminates vascular properties of malignant and benign breast tumors in vivo. Proc Natl Acad Sci USA 2008; 105: 17943 – 17948.en_US
dc.identifier.citedreferenceLi X, Huang W, Morris EA, Tudorica LA, Seshan VE, Rooney WD, Tagge I, Wang Y, Xu J, Springer CS Jr. Dynamic NMR effects in breast cancer dynamic‐contrast‐enhanced MRI. Proc Natl Acad Sci USA 2008; 105: 17937 – 17942.en_US
dc.identifier.citedreferenceJain R, Ellika SK, Scarpace L, Schultz LR, Rock JP, Gutierrez J, Patel SC, Ewing J, Mikkelsen T. Quantitative estimation of permeability surface‐area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. AJNR Am J Neuroradiol 2008; 29: 694 – 700.en_US
dc.identifier.citedreferenceKershaw LE, Cheng HL. Temporal resolution and SNR requirements for accurate DCE‐MRI data analysis using the AATH model. Magn Reson Med 2010; 64: 1772 – 1780.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.