Show simple item record

The mass function of black holes 1< z <4.5: comparison of models with observations

dc.contributor.authorNatarajan, Priyamvadaen_US
dc.contributor.authorVolonteri, Martaen_US
dc.date.accessioned2012-06-15T14:32:53Z
dc.date.available2013-07-01T14:33:04Zen_US
dc.date.issued2012-05-21en_US
dc.identifier.citationNatarajan, Priyamvada; Volonteri, Marta (2012). "The mass function of black holes 1< z <4.5: comparison of models with observations." Monthly Notices of the Royal Astronomical Society 422(3). <http://hdl.handle.net/2027.42/91332>en_US
dc.identifier.issn0035-8711en_US
dc.identifier.issn1365-2966en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91332
dc.description.abstractIn this paper, we compare the observationally derived black hole mass function (BHMF) of luminous (>10 45 –10 46 erg s −1 ) broad‐line quasars (BLQSOs) at 1 < z < 4.5 drawn from the Sloan Digital Sky Survey (SDSS) presented by Kelly et al., with models of merger‐driven black hole (BH) growth in the context of standard hierarchical structure formation models. In these models, we explore two distinct black hole seeding prescriptions at the highest redshifts: ‘light seeds’– remnants of Population III stars and ‘massive seeds’ that form from the direct collapse of pre‐galactic discs. The subsequent merger triggered mass build‐up of the black hole population is tracked over cosmic time under the assumption of a fixed accretion rate as well as rates drawn from the distribution derived by Merloni & Heinz. Four model snapshots at z = 1.25, 2, 3.25 and 4.25 are compared with the SDSS‐derived BHMFs of BLQSOs. We find that the light seed models fall short of reproducing the observationally derived mass function of BLQSOs at M BH > 10 9  M ⊙ throughout the redshift range; the massive seed models with a fixed accretion rate of 0.3 Edd, or with accretion rates drawn from the Merloni & Heinz distribution provide the best fit to the current observational data at z > 2, although they overestimate the high‐mass end of the mass function at lower redshifts. At low redshifts, a drastic drop in the accretion rate is observed and this is explained as arising due to the diminished gas supply available due to consumption by star formation or changes in the geometry of the inner feeding regions. Therefore, the overestimate at the high‐mass end of the black hole mass function for the massive seed models can be easily modified, as the accretion rate is likely significantly lower at these epochs than what we assume. For the Merloni & Heinz model, examining the Eddington ratio distributions f Edd , we find that they are almost uniformly sampled from f Edd = 10 −2 to 1 at z ≃ 1, while at high redshift, current observations suggest accretion rates close to Eddington, if not mildly super‐Eddington, at least for these extremely luminous quasars. Our key findings are that the duty cycle of super‐massive black holes powering BLQSOs increases with increasing redshift for all models and models with Population III remnants as black hole seeds are unable to fit the observationally derived BHMFs for BLQSOs, lending strong support for the massive seeding model.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.subject.otherGalaxies: Nucleien_US
dc.subject.otherCosmology: Observationsen_US
dc.subject.otherCosmology: Theoryen_US
dc.subject.otherQuasars: Generalen_US
dc.titleThe mass function of black holes 1< z <4.5: comparison of models with observationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics and Astronomy, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherInstitute for Theory and Computation, Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USAen_US
dc.contributor.affiliationotherDepartment of Astronomy, Yale University, New Haven, CT 06511, USAen_US
dc.identifier.pmid23255343en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91332/1/j.1365-2966.2012.20708.x.pdf
dc.identifier.doi10.1111/j.1365-2966.2012.20708.xen_US
dc.identifier.sourceMonthly Notices of the Royal Astronomical Societyen_US
dc.identifier.citedreferenceSilk J., Rees M. J., 1998, A&A, 331, L1en_US
dc.identifier.citedreferenceNatarajan P., 2012, preprint (arXiv:1105.4902)en_US
dc.identifier.citedreferenceOmukai K., Palla F., 2003, ApJ, 589, 677en_US
dc.identifier.citedreferencePizzella A., Corsini E. M., Dalla Bontà E., Sarzi M., Coccato L., Bertola F., 2005, ApJ, 631, 785en_US
dc.identifier.citedreferenceRice K., Lodato G., Armitage P., 2005, MNRAS, 364, L56en_US
dc.identifier.citedreferenceRichards G. et al., 2006, AJ, 131, 2766en_US
dc.identifier.citedreferenceScannapieco E., Barkana R., 2002, ApJ, 571, 585en_US
dc.identifier.citedreferenceScannapieco E., Schneider R., Ferrara A., 2003, ApJ, 589, 35en_US
dc.identifier.citedreferenceShapiro S. L., 2005, ApJ, 620, 59en_US
dc.identifier.citedreferenceTaffoni G., Mayer L., Colpi M., Governato F., 2003, MNRAS, 341, 434en_US
dc.identifier.citedreferenceThompson C., Quataert E., Murray N., 2005, ApJ, 618, 569en_US
dc.identifier.citedreferenceTremaine S. et al., 2002, ApJ, 574, 740en_US
dc.identifier.citedreferenceTreister E., Schawinski K., Volonteri M., Natarajan P., Gawiser E., 2011, Nat, 474, 356en_US
dc.identifier.citedreferenceTurk M., Abel T., O’Shea B., 2009, Sci, 325, 601en_US
dc.identifier.citedreferenceVolonteri M., 2010, in Maraschi L., Ghisellini G., Della Ceca R., Tavecchio F., eds, ASP Conf. Ser. Vol. 427, Accretion and Ejection in AGN: A Global View. Astron. Soc. Pac., San Francisco, p. 3en_US
dc.identifier.citedreferenceVolonteri M., Begelman M., 2010, MNRAS, 409, 1022en_US
dc.identifier.citedreferenceVolonteri M., Natarajan P., 2009, MNRAS, 400, 1911en_US
dc.identifier.citedreferenceVolonteri M., Rees M. J., 2005, ApJ, 633, 624en_US
dc.identifier.citedreferenceVolonteri M., Rees M. J., 2006, ApJ, 650, 669en_US
dc.identifier.citedreferenceVolonteri M., Loclato G., Natarajan P., 2008, MNRAS, 383, 1079en_US
dc.identifier.citedreferenceWillott C., 2011, ApJ, 742, L8en_US
dc.identifier.citedreferenceYoo J., Miralda Escudé J., 2004, ApJ, 614, L25en_US
dc.identifier.citedreferenceYoshida N., Omukai K., Hernquist L., Abel T., 2006, ApJ, 652, 6en_US
dc.identifier.citedreferenceBaes M., Buyle P., Hau G. K. T., Dejonghe H., 2003, MNRAS, 341, L44en_US
dc.identifier.citedreferenceBegelman M. C., Volonteri M., Rees M. J., 2006, MNRAS, 370, 289en_US
dc.identifier.citedreferenceCowie L. L., Barger A. J., Hasinger G., 2012, ApJ, preprint (arXiv1110:3326)en_US
dc.identifier.citedreferenceDavis A. J., Natarajan P., 2009, MNRAS, 393, 1498en_US
dc.identifier.citedreferenceDotti M., Colpi M., Haardt F., Mayer L., 2007, MNRAS, 379, 956en_US
dc.identifier.citedreferenceFan X. et al., 2001, AJ, 121, 54en_US
dc.identifier.citedreferenceFerrarese L., 2002, ApJ, 578, 90en_US
dc.identifier.citedreferenceFerrarese L., Merritt D., 2000, ApJ, 578, 90en_US
dc.identifier.citedreferenceFiore S. et al., 2012, A&A, 537, 16en_US
dc.identifier.citedreferenceFryer C. L., Woosley S. E., Heger A., 2001, ApJ, 550, 372en_US
dc.identifier.citedreferenceGebhardt K. et al., 2000, ApJ, 539, L13en_US
dc.identifier.citedreferenceGreif T., White S., Klessen R., Springel V., 2011, ApJ, 736, 147en_US
dc.identifier.citedreferenceGültekin K. et al., 2009, ApJ, 698, 198en_US
dc.identifier.citedreferenceHaiman Z., 2004, ApJ, 613, 36en_US
dc.identifier.citedreferenceHaring N., Rix H.‐W., 2004, ApJ, 604, L89en_US
dc.identifier.citedreferenceKauffmann G., Haehnelt M., 2000, MNRAS, 311, 576en_US
dc.identifier.citedreferenceKelly B. C., Vestergaard M., Fan X., Hopkins P., Hernquist L., Siemiginowska A., 2010, ApJ, 719, 1315en_US
dc.identifier.citedreferenceKing A., 2003, ApJ, 596, L27en_US
dc.identifier.citedreferenceKoushiappas S. M., Bullock J. S., Dekel A., 2004, MNRAS, 354, 292en_US
dc.identifier.citedreferenceLa Franca F. et al., 2005, ApJ, 635, L864en_US
dc.identifier.citedreferenceLodato G., Natarajan P., 2006, MNRAS, 371, 1813en_US
dc.identifier.citedreferenceLodato G., Natarajan P., 2007, MNRAS, 377, L64en_US
dc.identifier.citedreferenceMarconi A., Hunt L., 2003, ApJ, 598, L21en_US
dc.identifier.citedreferenceMarconi A., Risaliti G., Gilli R., Hunt L. K., Maiolino R., Salvati M., 2004, MNRAS, 351, 169en_US
dc.identifier.citedreferenceMerloni A., Heinz S., 2008, MNRAS, 388, 1011en_US
dc.identifier.citedreferenceMortlock D. et al., 2011, Nat, 474, 616en_US
dc.identifier.citedreferenceNatarajan P., Treister E., 2009, MNRAS, 393, 838en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.