Show simple item record

Expression of axonal protein degradation machinery in sympathetic neurons is regulated by nerve growth factor

dc.contributor.authorFrampton, John P.en_US
dc.contributor.authorGuo, Chongen_US
dc.contributor.authorPierchala, Brian A.en_US
dc.date.accessioned2012-06-15T14:33:28Z
dc.date.available2013-10-01T17:06:30Zen_US
dc.date.issued2012-08en_US
dc.identifier.citationFrampton, John P.; Guo, Chong; Pierchala, Brian A. (2012). "Expression of axonal protein degradation machinery in sympathetic neurons is regulated by nerve growth factor." Journal of Neuroscience Research 90(8): 1533-1546. <http://hdl.handle.net/2027.42/91359>en_US
dc.identifier.issn0360-4012en_US
dc.identifier.issn1097-4547en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91359
dc.description.abstractDeficiencies in protein degradation and proteolytic function within neurons are linked to a number of neurodegenerative diseases and developmental disorders. Compartmentalized cultures of peripheral neurons were used to investigate the properties and relative abundance of the proteolytic machinery in the axons and cell bodies of sympathetic and sensory neurons. Immunoblotting of axonal proteins demonstrated that LAMP2, LC3, and PSMA2 were abundant in axons, suggesting that lysosomes, autophagosomes and proteasomes were located in axons. Interestingly, the expression of proteins associated with lysosomes and proteasomes were upregulated selectively in axons by NGF stimulation of the distal axons of sympathetic neurons, suggesting that axonal growth and maintenance requires local protein turnover. The regulation of the abundance of both proteasomes and lysosomes in axons by NGF provides a link between protein degradation and the trophic status of peripheral neurons. Inhibition of proteasomes located in axons resulted in an accumulation of ubiquitinated proteins in these axons. In contrast, lysosome inhibition in axons did not result in an accumulation of ubiquitinated proteins or the transferrin receptor, a transmembrane protein degraded by lysosomes. Interestingly, lysosomes were transported both retrogradely and anterogradely, so it is likely that ubiquitinated proteins that are normally destined for degradation by lysosomes in axons can be transported to the cellbodies for degradation. In summary, proteasomal degradation occurs locally, whereas proteins degraded by lysosomes can most likely either be degraded locally in axons or be transported to cell bodies for degradation. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherTransporten_US
dc.subject.otherAutophagyen_US
dc.subject.otherNGFen_US
dc.subject.otherLysosomeen_US
dc.subject.otherProteasomeen_US
dc.titleExpression of axonal protein degradation machinery in sympathetic neurons is regulated by nerve growth factoren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbsecondlevelPsychologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michiganen_US
dc.identifier.pmid22411744en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91359/1/23041_ftp.pdf
dc.identifier.doi10.1002/jnr.23041en_US
dc.identifier.sourceJournal of Neuroscience Researchen_US
dc.identifier.citedreferenceMizushima N, Levine B, Cuervo AM, Klionsky DJ. 2008. Autophagy fights disease through cellular self‐digestion. Nature 451: 1069 – 1075.en_US
dc.identifier.citedreferenceOverly CC, Rieff HI, Hollenbeck PJ. 1996. Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J Cell Sci 109: 971 – 980.en_US
dc.identifier.citedreferenceKorolchuk VI, Menzies FM, Rubinsztein DC. 2010. Mechanisms of cross‐talk between the ubiquitin‐proteasome and autophagy‐lysosome systems. FEBS Lett 584: 1393 – 1398.en_US
dc.identifier.citedreferenceKuma A, Matsui M, Mizushima N. 2007. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3: 323 – 328.en_US
dc.identifier.citedreferenceLee S, Sato Y, Nixon RA. 2011. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's‐like axonal dystrophy. J Neurosci 31: 7817 – 7830.en_US
dc.identifier.citedreferenceLuzio JP, Pryor PR, Bright NA. 2007. Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8: 622 – 632.en_US
dc.identifier.citedreferenceOrike N, Thrasivoulou C, Wrigley A, Cowen T. 2001. Differential regulation of survival and growth in adult sympathetic neurons: an in vitro study of neurotrophin responsiveness. J Neurobiol 47: 295 – 305.en_US
dc.identifier.citedreferenceYang Z, Klionsky DJ. 2009. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335: 1 – 32.en_US
dc.identifier.citedreferenceVoges D, Zwickl P, Baumeister W. 1999. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68: 1015 – 1068.en_US
dc.identifier.citedreferenceVerma P, Chierzi S, Codd AM, Campbell DS, Meyer RL, Holt CE, Fawcett JW. 2005. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci 25: 331 – 342.en_US
dc.identifier.citedreferenceTsui‐Pierchala BA, Milbrandt J, Johnson EM Jr. 2002. NGF utilizes c‐Ret via a novel GFL‐independent, inter‐RTK signaling mechanism to maintain the trophic status of mature sympathetic neurons. Neuron 33: 261 – 273.en_US
dc.identifier.citedreferenceTsui‐Pierchala BA, Ginty DD. 1999. Characterization of an NGF‐P‐TrkA retrograde‐signaling complex and age‐dependent regulation of TrkA phosphorylation in sympathetic neurons. J Neurosci 19: 8207 – 8218.en_US
dc.identifier.citedreferenceThrower JS, Hoffman L, Rechsteiner M, Pickart CM. 2000. Recognition of the polyubiquitin proteolytic signal. EMBO J 19: 94 – 102.en_US
dc.identifier.citedreferenceTaylor JP, Hardy J, Fischbeck KH. 2002. Toxic proteins in neurodegenerative disease. Science 296: 1991 – 1995.en_US
dc.identifier.citedreferenceTai HC, Schuman EM. 2008. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci 9: 826 – 838.en_US
dc.identifier.citedreferenceSong JW, Misgeld T, Kang H, Knecht S, Lu J, Cao Y, Cotman SL, Bishop DL, Lichtman JW. 2008. Lysosomal activity associated with developmental axon pruning. J Neurosci 28: 8993 – 9001.en_US
dc.identifier.citedreferenceSofroniew MV, Howe CL, Mobley WC. 2001. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24: 1217 – 1281.en_US
dc.identifier.citedreferenceRubinsztein DC. 2006. The roles of intracellular protein‐degradation pathways in neurodegeneration. Nature 443: 780 – 786.en_US
dc.identifier.citedreferencePankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131 – 24145.en_US
dc.identifier.citedreferenceArancibia‐Carcamo IL, Yuen EY, Muir J, Lumb MJ, Michels G, Saliba RS, Smart TG, Yan Z, Kittler JT, Moss SJ. 2009. Ubiquitin‐dependent lysosomal targeting of GABA A receptors regulates neuronal inhibition. Proc Natl Acad Sci U S A 106: 17552 – 17557.en_US
dc.identifier.citedreferenceBingol B, Schuman EM. 2006. Activity‐dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441: 1144 – 1148.en_US
dc.identifier.citedreferenceCampenot RB, Lund K, Mok SA. 2009. Production of compartmented cultures of rat sympathetic neurons. Nat Protoc 4: 1869 – 1887.en_US
dc.identifier.citedreferenceChau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A. 1989. A multiubiquitin chain is confined to specific lysine in a targeted short‐lived protein. Science 243: 1576 – 1583.en_US
dc.identifier.citedreferenceColledge M, Snyder EM, Crozier RA, Soderling JA, Jin Y, Langeberg LK, Lu H, Bear MF, Scott JD. 2003. Ubiquitination regulates PSD‐95 degradation and AMPA receptor surface expression. Neuron 40: 595 – 607.en_US
dc.identifier.citedreferenceCordonnier MN, Dauzonne D, Louvard D, Coudrier E. 2001. Actin filaments and myosin I alpha cooperate with microtubules for the movement of lysosomes. Mol Biol Cell 12: 4013 – 4029.en_US
dc.identifier.citedreferenceDiAntonio A, Hicke L. 2004. Ubiquitin‐dependent regulation of the synapse. Annu Rev Neurosci 27: 223 – 246.en_US
dc.identifier.citedreferenceEaston RM, Deckwerth TL, Parsadanian AS, Johnson EM Jr. 1997. Analysis of the mechanism of loss of trophic factor dependence associated with neuronal maturation: a phenotype indistinguishable from Bax deletion. J Neurosci 17: 9656 – 9666.en_US
dc.identifier.citedreferenceEhlers MD. 2003. Activity level controls postsynaptic composition and signaling via the ubiquitin‐proteasome system. Nat Neurosci 6: 231 – 242.en_US
dc.identifier.citedreferenceErnsberger U. 2009. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 336: 349 – 384.en_US
dc.identifier.citedreferenceGoedert M, Otten U, Thoenen H. 1978. Biochemical effects of antibodies against nerve growth factor on developing and differentiated sympathetic ganglia. Brain Res 148: 264 – 268.en_US
dc.identifier.citedreferenceGoldberg AL. 2003. Protein degradation and protection against misfolded or damaged proteins. Nature 426: 895 – 899.en_US
dc.identifier.citedreferenceGoslin K, Banker G. 1998. Culturing nerve cells. Cambridge, MA: MIT Press.en_US
dc.identifier.citedreferenceGriffiths G, Hoflack B, Simons K, Mellman I, Kornfeld S. 1988. The mannose 6‐phosphate receptor and the biogenesis of lysosomes. Cell 52: 329 – 341.en_US
dc.identifier.citedreferenceHennigan A, O'Callaghan RM, Kelly AM. 2007. Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem Soc Trans 35: 424 – 427.en_US
dc.identifier.citedreferenceHicke L. 2001. Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2: 195 – 201.en_US
dc.identifier.citedreferenceKim PK, Hailey DW, Mullen RT, Lippincott‐Schwartz J. 2008. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci U S A 105: 20567 – 20574.en_US
dc.identifier.citedreferenceKlionsky DJ, Emr SD. 2000. Autophagy as a regulated pathway of cellular degradation. Science 290: 1717 – 1721.en_US
dc.identifier.citedreferenceKlionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard‐Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, Clarke PG, Clark RS, Clarke SG, Clave C, Cleveland JL, Codogno P, Colombo MI, Coto‐Montes A, Cregg JM, Cuervo AM, Debnath J, Demarchi F, Dennis PB, Dennis PA, Deretic V, Devenish RJ, Di Sano F, Dice JF, Difiglia M, Dinesh‐Kumar S, Distelhorst CW, Djavaheri‐Mergny M, Dorsey FC, Droge W, Dron M, Dunn WA Jr, Duszenko M, Eissa NT, Elazar Z, Esclatine A, Eskelinen EL, Fesus L, Finley KD, Fuentes JM, Fueyo J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson SB, Gohla A, Goldberg AL, Gonzalez R, Gonzalez‐Estevez C, Gorski S, Gottlieb RA, Haussinger D, He YW, Heidenreich K, Hill JA, Hoyer‐Hansen M, Hu X, Huang WP, Iwasaki A, Jaattela M, Jackson WT, Jiang X, Jin S, Johansen T, Jung JU, Kadowaki M, Kang C, Kelekar A, Kessel DH, Kiel JA, Kim HP, Kimchi A, Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovacs AL, Kroemer G, Kuan CY, Kumar R, Kundu M, Landry J, Laporte M, Le W, Lei HY, Lenardo MJ, Levine B, Lieberman A, Lim KL, Lin FC, Liou W, Liu LF, Lopez‐Berestein G, Lopez‐Otin C, Lu B, Macleod KF, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer AJ, Melendez A, Michels P, Miotto G, Mistiaen WP, Mizushima N, Mograbi B, Monastyrska I, Moore MN, Moreira PI, Moriyasu Y, Motyl T, Munz C, Murphy LO, Naqvi NI, Neufeld TP, Nishino I, Nixon RA, Noda T, Nurnberg B, Ogawa M, Oleinick NL, Olsen LJ, Ozpolat B, Paglin S, Palmer GE, Papassideri I, Parkes M, Perlmutter DH, Perry G, Piacentini M, Pinkas‐Kramarski R, Prescott M, Proikas‐Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein DC, Ryan KM, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen PO, Seleverstov O, Settleman J, Shacka JJ, Shapiro IM, Sibirny A, Silva‐Zacarin EC, Simon HU, Simone C, Simonsen A, Smith MA, Spanel‐Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug PE, Subauste CS, Sugimoto S, Sulzer D, Suzuki T, Swanson MS, Tabas I, Takeshita F, Talbot NJ, Talloczy Z, Tanaka K, Tanida I, Taylor GS, Taylor JP, Terman A, Tettamanti G, Thompson CB, Thumm M, Tolkovsky AM, Tooze SA, Truant R, Tumanovska LV, Uchiyama Y, Ueno T, Uzcategui NL, van der Klei I, Vaquero EC, Vellai T, Vogel MW, Wang HG, Webster P, Wiley JW, Xi Z, Xiao G, Yahalom J, Yang JM, Yap G, Yin XM, Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, Deter RL. 2008. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151 – 175.en_US
dc.identifier.citedreferenceKorhonen L, Lindholm D. 2004. The ubiquitin proteasome system in synaptic and axonal degeneration: a new twist to an old cycle. J Cell Biol 165: 27 – 30.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.