Show simple item record

Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A

dc.contributor.authorAnderson, Olivia S.en_US
dc.contributor.authorNahar, Muna S.en_US
dc.contributor.authorFaulk, Christopheren_US
dc.contributor.authorJones, Tamara R.en_US
dc.contributor.authorLiao, Chunyangen_US
dc.contributor.authorKannan, Kurunthachalamen_US
dc.contributor.authorWeinhouse, Carenen_US
dc.contributor.authorRozek, Laura S.en_US
dc.contributor.authorDolinoy, Dana C.en_US
dc.date.accessioned2012-06-15T14:33:33Z
dc.date.available2013-08-01T14:04:39Zen_US
dc.date.issued2012-06en_US
dc.identifier.citationAnderson, Olivia S.; Nahar, Muna S.; Faulk, Christopher; Jones, Tamara R.; Liao, Chunyang; Kannan, Kurunthachalam; Weinhouse, Caren; Rozek, Laura S.; Dolinoy, Dana C. (2012). "Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A." Environmental and Molecular Mutagenesis 53(5): 334-342. <http://hdl.handle.net/2027.42/91363>en_US
dc.identifier.issn0893-6692en_US
dc.identifier.issn1098-2280en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91363
dc.description.abstractAnimal studies have linked perinatal bisphenol A (BPA) exposure to altered DNA methylation, but little attention is given to analyzing multiple physiologically relevant doses. Utilizing the viable yellow agouti ( A vy ) mouse, we examine the effects of developmental exposure through maternal diet to 50 ng BPA/kg ( n = 14 litters), 50 μg BPA/kg ( n = 9 litters), or 50 mg BPA/kg ( n = 13 litters) on global and candidate gene methylation at postnatal day 22. Global methylation analysis reveals hypermethylation in tail tissue of a/a and A vy /a offspring across all dose groups compared with controls ( n = 11 litters; P < 0.02). Analysis of coat color phenotype replicates previous work showing that the distribution of 50 mg BPA/kg A vy /a offspring shifts toward yellow ( P = 0.006) by decreasing DNA methylation in the retrotransposon upstream of the Agouti gene ( P = 0.03). Maternal exposure to 50 μg or 50 ng BPA/kg, however, results in altered coat color distributions in comparison with control ( P = 0.04 and 0.02), but no DNA methylation effects at the Agouti gene are noted. DNA methylation at the CDK5 activator‐binding protein ( Cabp IAP ) metastable epiallele shows hypermethylation in the 50 μg BPA/kg offspring, compared with controls ( P = 0.02). Comparison of exposed mouse liver BPA levels to human fetal liver BPA levels indicates that the three experimental exposures are physiologically relevant. Thus, perinatal BPA exposure affects offspring phenotype and epigenetic regulation across multiple doses, indicating the need to evaluate dose effects in human clinical and population studies. Environ. Mol. Mutagen. 2012. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherEpigeneticsen_US
dc.subject.otherDevelopmental Origins of Diseaseen_US
dc.subject.otherViable Yellow Agouti ( a Vy ) Mouseen_US
dc.subject.otherBisphenol Aen_US
dc.subject.otherDNA Methylationen_US
dc.titleEpigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol Aen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Environmental Health Sciences, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Otolaryngology, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherWadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, State University of New York at Albany, Albany, New Yorken_US
dc.contributor.affiliationother1415 Washington Heights, Ann Arbor, MI 48109‐2029, USAen_US
dc.identifier.pmid22467340en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91363/1/21692_ftp.pdf
dc.identifier.doi10.1002/em.21692en_US
dc.identifier.sourceEnvironmental and Molecular Mutagenesisen_US
dc.identifier.citedreferenceRubin BS, Soto AM. 2009. Bisphenol A: Perinatal exposure and body weight. Mol Cell Endocrinol 304: 55 – 62.en_US
dc.identifier.citedreferenceDolinoy D, Weinhouse C, Jones T, Rozek L, Jirtle R. 2010. Variable histone modifications at the A (vy) metastable epiallele. Epigenetics 5: 637 – 644.en_US
dc.identifier.citedreferenceDruker R, Bruxner TJ, Lehrbach NJ, Whitelaw E. 2004. Complex patterns of transcription at the insertion site of a retrotransposon in the mouse. Nucl Acids Res 32: 5800 – 5808.en_US
dc.identifier.citedreferenceDuhl D, Vrieling H, Miller K, Wolff G, Barsh G. 1994. Neomorphic agouti mutations in obese yellow mice. Nat Genet 8: 59 – 65.en_US
dc.identifier.citedreferenceGallou‐Kabani C, Gabory A, Tost J, Karimi M, Mayeur S, Lesage J, Boudadi E, Gross M‐S, Taurelle J, Vigé A, Breton C, Reusens B, Remacle C, Vieau D, Ekström TJ, Jais J‐P, Junien C. 2010. Sex‐ and diet‐specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high‐fat diet. PLoS ONE 5: e14398.en_US
dc.identifier.citedreferenceGinsberg G, Rice DC. 2009. Does rapid metabolism ensure negligible risk from bisphenol A? Environ Health Perspect 117: 1639 – 1643.en_US
dc.identifier.citedreferenceGrunau C, Clark S, Rosenthal A. 2001. Bisulfite genomic sequencing: Systematic investigation of critical experimental parameters. Nucl Acids Res 29: E65 – 5.en_US
dc.identifier.citedreferenceHeindel JJ, vom Saal FS. 2009. Role of nutrition and environmental endocrine disrupting chemicals during the perinatal period on the aetiology of obesity. Mol Cell Endocrinol 304: 90 – 96.en_US
dc.identifier.citedreferenceHo S‐M, Tang W‐Y, Belmonte de Frausto J, Prins GS. 2006. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase Type 4 Variant 4. Cancer Res 66: 5624 – 5632.en_US
dc.identifier.citedreferenceHonma S, Suzuki A, Buchanan DL, Katsu Y, Watanabe H, Iguchi T. 2002. Low dose effect of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod Toxicol 16: 117 – 122.en_US
dc.identifier.citedreferenceJirtle RL, Skinner MK. 2007. Environmental epigenomics and disease susceptibility. Nat Rev Genet 8: 253 – 262.en_US
dc.identifier.citedreferenceKaminen‐Ahola N, Ahola A, Maga M, Mallitt K‐A, Fahey P, Cox T, Whitelaw E, Chong S. 2010. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet. 6: e1000811.en_US
dc.identifier.citedreferenceKarimi M, Johansson S, Ekstrm T. 2006. Using LUMA: A luminometric‐based assay for global DNA‐methylation. Epigenetics 1: 45 – 48.en_US
dc.identifier.citedreferenceKundakovic M, Champagne FA. 2011. Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immunity 25: 1084 – 1093.en_US
dc.identifier.citedreferenceLang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, Melzer D. 2008. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 300: 1303 – 1310.en_US
dc.identifier.citedreferenceLee J‐J, Geli J, Larsson C, Wallin G, Karimi M, Zedenius J, Hg A, Foukakis T. 2008. Gene‐specific promoter hypermethylation without global hypomethylation in follicular thyroid cancer. Int J Oncol 33: 861 – 869.en_US
dc.identifier.citedreferenceMiltenberger R, Mynatt R, Wilkinson J, Woychik R. 1997. The role of the agouti gene in the Yellow Obese Syndrome. J Nutr 127: 1902S – 1907S.en_US
dc.identifier.citedreferenceMorgan H, Sutherland H, Martin D, Whitelaw E. 1999. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23: 314 – 318.en_US
dc.identifier.citedreferenceMoriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H, Nakao K. 2002. Thyroid hormone action is disrupted by bisphenol a as an antagonist. J Clin Endocrinol Metab 87: 5185 – 5190.en_US
dc.identifier.citedreferencePadmanabhan V, Siefert K, Ransom S, Johnson T, Pinkerton J, Anderson L, Tao L, Kannan K. 2008. Maternal bisphenol‐A levels at delivery: A looming problem? J Perinatol 28: 258 – 263.en_US
dc.identifier.citedreferencePoage GM, Houseman EA, Christensen BC, Butler RA, Avissar‐Whiting M, McClean MD, Waterboer T, Pawlita M, Marsit CJ, Kelsey KT. 2011. Global hypomethylation identifies loci targeted for hypermethylation in head and neck cancer. Clin Cancer Res 17: 3579 – 3589.en_US
dc.identifier.citedreferencePrins GS, Tang W‐Y, Belmonte J, Ho S‐M. 2008. Perinatal exposure to oestradiol and bisphenol A alters the prostate epigenome and increases susceptibility to carcinogenesis. Basic Clinical Pharmacol Toxicol 102: 134 – 138.en_US
dc.identifier.citedreferenceRakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E. 2002. Metastable epialleles in mammals. Trends Genet 18: 348 – 351.en_US
dc.identifier.citedreferenceRubin BS, Murray MK, Damassa DA, King JC, Soto AM. 2001. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect 109: 675 – 680.en_US
dc.identifier.citedreferenceRuvinsky A, Flood W, Costantini F. 2001. Developmental mosaicism may explain spontaneous reappearance of the Axin(Fu) mutation in mice. Genesis 29: 49 – 54.en_US
dc.identifier.citedreferenceSieli PT, Jašarević E, Warzak DA, Mao J, Ellersieck MR, Liao C, Kannan K, Collet SH, Toutain P‐L, vom Saal FS, Rosenfeld CS. 2011. Comparison of serum bisphenol A concentrations in mice exposed to bisphenol a through the diet versus oral bolus exposure. Environ Health Perspect 119: 1260 – 1265.en_US
dc.identifier.citedreferenceTakahashi O, Oishi S. 2003. Testicular toxicity of dietarily or parenterally administered bisphenol A in rats and mice. Food Chem Toxicol 41: 1035 – 1044.en_US
dc.identifier.citedreferenceVandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. 2007. Human exposure to bisphenol A (BPA). Reprod Toxicol 24: 139 – 177.en_US
dc.identifier.citedreferenceVandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. 2009. Bisphenol‐A and the great divide: A review of controversies in the field of endocrine disruption. Endocrine Rev 30: 75 – 95.en_US
dc.identifier.citedreferenceVasicek T, Zeng L, Guan X, Zhang T, Costantini F, Tilghman S. 1997. Two dominant mutations in the mouse fused gene are the result of transposon insertions. Genetics 147: 777 – 786.en_US
dc.identifier.citedreferenceVolkel W, Colnot T, Csanady G, Filser J, Dekant W. 2002. Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol 15: 1281 – 1287.en_US
dc.identifier.citedreferencevom Saal FS, Welshons WV. 2006. Large effects from small exposures. II. The importance of positive controls in low‐dose research on bisphenol A. Environ Res 100: 50 – 76.en_US
dc.identifier.citedreferenceWaterland R, Jirtle R. 2003. Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23: 5293 – 5300.en_US
dc.identifier.citedreferenceWaterland R, Jirtle R. 2004. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20: 63 – 68.en_US
dc.identifier.citedreferenceBarker DJ. 2004. The developmental origins of adult disease. J Am Coll Nut 23: 588 – 595.en_US
dc.identifier.citedreferenceBateson P, Barker D, Clutton‐Brock T, Deb D, D'Udine B, Foley RA, Gluckman P, Godfrey K, Kirkwood T, Lahr MM, McNamara J, Metcalfe NB, Monaghan P, Spencer HG, Sultan SE. 2004. Developmental plasticity and human health. Nature 430: 419 – 421.en_US
dc.identifier.citedreferenceBromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS. 2010. Bisphenol‐A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. The FASEB J 24: 2273 – 2280.en_US
dc.identifier.citedreferenceCalafat A, Ye X, Wong L, Reidy J, Needham L. 2008. Exposure of the U.S. population to bisphenol A and 4‐tertiary‐octylphenol: 2003–2004. Environ Health Perspect 116: 39 – 44.en_US
dc.identifier.citedreferenceCooney CA, Dave AA, Wolff GL. 2002. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132: 2393 – 2400.en_US
dc.identifier.citedreferenceDeneberg S, Grovdal M, Karimi M, Jansson M, Nahi H, Corbacioglu A, Gaidzik V, Dohner K, Paul C, Ekstrom TJ, Hellstrom‐Lindberg E, Lehmann S. 2010. Gene‐specific and global methylation patterns predict outcome in patients with acute myeloid leukemia. Leukemia 24: 932 – 941.en_US
dc.identifier.citedreferenceDolinoy DC, Wiedman J, Waterland R, Jirtle RL. 2006. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114: 567 – 572.en_US
dc.identifier.citedreferenceDolinoy DC, Huang D, Jirtle RL. 2007. Maternal nutrient supplementation counteracts bisphenol A‐induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104: 13056 – 13061.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.