Show simple item record

Time course of tinnitus development following noise exposure in mice

dc.contributor.authorTurner, Jeremyen_US
dc.contributor.authorLarsen, Deben_US
dc.contributor.authorHughes, Larryen_US
dc.contributor.authorMoechars, Diederiken_US
dc.contributor.authorShore, Susanen_US
dc.date.accessioned2012-06-15T14:33:39Z
dc.date.available2013-09-03T15:38:26Zen_US
dc.date.issued2012-07en_US
dc.identifier.citationTurner, Jeremy; Larsen, Deb; Hughes, Larry; Moechars, Diederik; Shore, Susan (2012). "Time course of tinnitus development following noise exposure in mice." Journal of Neuroscience Research 90(7): 1480-1488. <http://hdl.handle.net/2027.42/91367>en_US
dc.identifier.issn0360-4012en_US
dc.identifier.issn1097-4547en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91367
dc.description.abstractGap‐induced prepulse inhibition of acoustic startle (GPIAS) has been used in rats and mice to study the problem of tinnitus. The current study demonstrates that similar methods can be used to study the temporal development of tinnitus over time in middle‐aged mice. Six‐month‐old mice on a mixed C57Bl6 × 129 background were anesthetized with isoflurane and exposed to unilateral noise (n = 15), or sham exposure for controls (n = 8), for 1 hr (16‐kHz octave band signal, 116‐dB SPL). Tinnitus was tested in eight different sound frequency bands before and at postexposure time points of 1, 3–4, 7, 14, 21, and 30 days and monthly thereafter until 7 months postexposure. Noise‐exposed mice displayed a number of changes in GPIAS consistent with the presence of hyperacusis and tinnitus. Noise exposure was associated with acute tinnitus measured 1 day later at several frequencies at and above the exposure frequency center. Consistent, chronic tinnitus then emerged in the 24‐kHz range. Several time points following noise exposure suggested evidence of hyperacusis, often followed temporally by the development of deficits in GPIAS (reflecting tinnitus). Temporal development of these changes following noise exposure are discussed in the context of the interactions among aging, noise exposure, and the associated neurochemical changes that occur at early stages of auditory processing. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherCochlear Damageen_US
dc.subject.otherGapen_US
dc.subject.otherTinnitusen_US
dc.subject.otherHearingen_US
dc.subject.otherMouseen_US
dc.titleTime course of tinnitus development following noise exposure in miceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbsecondlevelPsychologyen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumKresge Hearing Research Institute, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumMolecular and Integrative Physiology, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherJohnson and Johnson Pharmaceutical Research and Development, Beerse, Belgiumen_US
dc.contributor.affiliationotherDepartment of Psychology, Illinois College, Jacksonville, Illinoisen_US
dc.contributor.affiliationotherDepartment of Surgery/Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinoisen_US
dc.contributor.affiliationotherDepartment of Surgery/Otolaryngology, Southern Illinois University School of Medicine, 801 Norther Rutledge, Springfield, IL 62794en_US
dc.identifier.pmid22434653en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91367/1/22827_ftp.pdf
dc.identifier.doi10.1002/jnr.22827en_US
dc.identifier.sourceJournal of Neuroscience Researchen_US
dc.identifier.citedreferenceTurner JG. 2007. Behavioral measures of tinnitus in laboratory animals. Prog Brain Res 166: 147 – 56.en_US
dc.identifier.citedreferenceHunter KP, Willott JF. 1987. Aging and the auditory brainstem response in mice with severe or minimal presbycusis. Hear Res 30: 207 – 218.en_US
dc.identifier.citedreferenceJastreboff PJ, Brennan J, Coleman JK, Sasaki CT. 1988. Phantom auditory sensation in rats: an animal model for tinnitus. Behav Neurosci 102: 811 – 822.en_US
dc.identifier.citedreferenceKoch M, Schnitzler HU. 1997. The acoustic startle response in rats—circuits mediating evocation, inhibition, and potentiation. Behav Brain Res 89: 35 – 49.en_US
dc.identifier.citedreferenceKujawa SG, Liberman MC. 2009. Adding insult to injury: cochlear nerve degeneration after “temporary” noise‐induced hearing loss. J Neurosci 29: 45: 14077 – 14085.en_US
dc.identifier.citedreferenceLi HS, Borg E. 1991. Age‐related loss of auditory sensitivity in two mouse genotypes. Acta Otolaryngol 111: 827 – 834.en_US
dc.identifier.citedreferenceLobarinas E, Sun W, Cushing R, Salvi R. 2004. A novel behavioral paradigm for assessing tinnitus using schedule‐induced polydipsia avoidance conditioning (SIP‐AC). Hear Res 190: 109 – 114.en_US
dc.identifier.citedreferenceLongenecker RJ, Galazyuk AV. 2011. Development of tinnitus in CBA/CaJ mice following sound exposure. J Assoc Res Otolaryngol [E‐pub ahead of print].en_US
dc.identifier.citedreferenceMeikle MB, Creedon TA, Griest SE. 2004. Tinnitus archive, 2nd ed. http://www.tinnitusArchive.org. Accessed 7 July 2011.en_US
dc.identifier.citedreferenceMiddleton JW, Kiritani T, Pedersen C, Turner JG, Shepherd GM, Tzounopoulos T. 2011. Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc Natl Acad Sci U S A 108: 7601 – 7606.en_US
dc.identifier.citedreferenceMikaelian DO. 1979. Development and degeneration of hearing in the C57/bl6 mouse: relation of electrophysiologic responses from the round window and cochlear nucleus to cochlear anatomy and behavioral responses. Laryngoscope 89: 1 – 15.en_US
dc.identifier.citedreferenceMiller EJ, Saint Marie LR, Breier MR, Swerdlow NR. 2010. Pathways from the ventral hippocampus and caudal amygdala to forebrain regions that regulate sensorimotor gating in the rat. Neuroscience 165: 601 – 611.en_US
dc.identifier.citedreferenceOuagazzal AM, Reiss D, Romand B. 2006. Effects of age‐related hearing loss on startle reflex and prepulse inhibition in mice on pure and mixed C57Bl and 129 genetic background. Behav Brain Res 172: 307 – 315.en_US
dc.identifier.citedreferencePodoshin L, Ben‐David J, Teszler CB. 1997. Pediatric and geriatric tinnitus. Int Tinnitus J 3: 101 – 103.en_US
dc.identifier.citedreferenceRalli M, Lobarinas E, Fetoni AR, Stolzberg D, Paludetti G, Salvi R. 2010. Comparison of salicylate‐ and quinine‐induced tinnitus in rats: development, time course, and evaluation of audiologic correlates. Otol Neurotol 31: 823 – 831.en_US
dc.identifier.citedreferenceRauschecker JP, Leaver AM, Muhlau M. 2010. Tuning out the noise: limbic‐auditory interactions in tinnitus. Neuron 66: 819 – 826.en_US
dc.identifier.citedreferenceRosenhall U. 2003. The influence of aging on noise‐induced hearing loss. Noise Health 5: 47 – 53.en_US
dc.identifier.citedreferenceRosenhall U, Karlsson AK. 1991. Tinnitus in old age. Scand Audiol 20: 165 – 171.en_US
dc.identifier.citedreferenceRuttiger L, Ciuffani J, Zenner HP, Knipper M. 2003. A behavioral paradigm to judge acute sodium salicylate‐induced sound experience in rats: a new approach for an animal model on tinnitus. Hear Res 180: 39 – 50.en_US
dc.identifier.citedreferenceShargorodsky J, Curham GC, Farwell WR. 2010. Prevalence and characteristics of tinnitus among US adults. Am J Med 123: 711 – 718.en_US
dc.identifier.citedreferenceShore SE, Koehler S, Oldakowski M, Hughes LF, Syed S. 2008. Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise‐induced hearing loss. Eur J Neurosci 27: 155 – 168.en_US
dc.identifier.citedreferenceSwerdlow NR, Braff DL, Geyer MA. 1999. Cross‐species studies of sensorimotor gating of the startle reflex. Ann N Y Acad Sci 877: 202 – 216.en_US
dc.identifier.citedreferenceSwerdlow NR, Geyer MA, Braff DL. 2001. Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156: 194 – 215.en_US
dc.identifier.citedreferenceTurner JG, Parrish J. 2008. Gap detection methods for assessing salicylate‐induced tinnitus and hyperacusis in rats. Am J Audiol 17: S185 – S192.en_US
dc.identifier.citedreferenceTurner JG, Willott JF. 1998. Exposure to an augmented acoustic environment alters auditory function in hearing‐impaired DBA/2J mice. Hear Res 118: 101 – 113.en_US
dc.identifier.citedreferenceTurner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, et al. 2006. Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120: 188 – 195.en_US
dc.identifier.citedreferenceWang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM. 2009. Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 164: 747 – 759.en_US
dc.identifier.citedreferenceWang H, Brozoski TJ, Caspary DM. 2011. Inhibitory neurotransmission in animal models of tinnitus: maladaptive plasticity. Hear Res [E‐pub ahead of print].en_US
dc.identifier.citedreferenceWeisz N, Hartmann T, Dohrmann K, Schlee W, Norena A. 2006. High‐frequency tinnitus without hearing loss does not mean absence of deafferentation. Hear Res 222: 108 – 114.en_US
dc.identifier.citedreferenceWillott JF. 1986. Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice. J Neurophysiol 56: 391 – 408.en_US
dc.identifier.citedreferenceWillott JF, Turner JG. 1999. Prolonged exposure to an augmented acoustic environment ameliorates age‐related auditory changes in C57BL/6J and DBA/2J mice. Hear Res 135: 78 – 88.en_US
dc.identifier.citedreferenceYang G, Lobarinas E, Zhang L, Turner JG, Stolzberg D, Salvi R, Sun W. 2007. Salicylate induced tinnitus: behavioral measures and neural activity in the auditory cortex of awake rats. Hear Res 226: 244 – 253.en_US
dc.identifier.citedreferenceZeng C, Nannapaneni N, Zhou J, Hughes LF, Shore S. 2009. Cochlear damage changes the distribution of vesicular glutamate transporters associated with auditory and nonauditory inputs to the cochlear nucleus. J Neurosci 29: 4210 – 4217.en_US
dc.identifier.citedreferenceZhang J, Zhang Y, Zhang X. 2010. Auditory cortex electrical stimulation suppresses tinnitus in rats. J Assoc Res Otolaryngol [E‐pub ahead of print].en_US
dc.identifier.citedreferenceBauer CA, Brozoski TJ. 2001. Assessing tinnitus and prospective tinnitus therapeutics using a psychophysical animal model. J Assoc Res Otolaryngol 2: 54 – 64.en_US
dc.identifier.citedreferenceBauer CA, Brozoski TJ, Rojas R, Boley J, Wyder M. 1999. Behavioral model of chronic tinnitus in rats. Otolaryngol Head Neck Surg 121: 457 – 462.en_US
dc.identifier.citedreferenceBraff DL, Geyer MA. 1990. Sensorimotor gating and schizophrenia: human and animal model studies. Arch Gen Psychiatry 47: 181 – 188.en_US
dc.identifier.citedreferenceColes RR, Lutman, Buffin JT. 2000. Guidelines on the diagnosis of noise‐induced hearing loss for medicolegal purposes. Clin Otolaryngol Allied Sci 25: 264 – 273.en_US
dc.identifier.citedreferenceDepartment of Veterans Affairs, Veterans Benefits Administration. 2009. Annual Benefits Report Fiscal Year 2009. Available at: http://www.vba.va.gov/REPORTS/abr/2009_abr.pdf. Accessed 6 July 2011.en_US
dc.identifier.citedreferenceEggermont JJ. 2008. Role of auditory cortex in noise‐ and drug‐induced tinnitus. Am J Audiol 17: S162 – S169.en_US
dc.identifier.citedreferenceEngineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, Borland MS, Kilgard MP. 2011. Reversing pathological neural activity using targeted plasticity. Nature [E‐pub 12 January 2011].en_US
dc.identifier.citedreferenceFolmer RL, McMillan GP, Austin DF, Henry JA. 2011. Audiometric thresholds and prevalence of tinnitus among male veterans in the United States: data from the National Health and Nutrition Examination Survey, 1999–2006. J Rehab Res Dev 48: 503 – 516.en_US
dc.identifier.citedreferenceGates GA, Schmid P, Kujawa SG, Nam B‐H, D'Agostino R. 2000. Longitudinal threshold changes in older men with audiometric notches. Hear Res 141: 220 – 228.en_US
dc.identifier.citedreferenceGriest SE, Bishop PM. 1998. Tinnitus as an early indicator of permanent hearing loss. A 15 year longitudinal study of noise exposed workers. AAOHN 46: 325 – 329.en_US
dc.identifier.citedreferenceGuitton MJ, Caston J, Ruel J, Johnson RM, Pujol R, Puel L. 2003. Salicylate induces tinnitus through activation of cochlear NMDA receptors. J Neurosci 23: 3944 – 3952.en_US
dc.identifier.citedreferenceHeffner HE. 2011. A two‐choice sound localization procedure for detecting lateralized tinnitus in animals. Behav Res Methods 43: 577 – 589.en_US
dc.identifier.citedreferenceHeffner HE, Harrington IA. 2002. Tinnitus in hamsters following exposure to intense sound. Hear Res 170: 83 – 95.en_US
dc.identifier.citedreferenceHeffner HE, Heffner RS. 2007. Hearing ranges of laboratory animals. J Am Assoc Lab Anim Sci 46: 20 – 22.en_US
dc.identifier.citedreferenceHenry KR, Chole RA. 1980. Genotypic differences in behavioral, physiological and anatomical expressions of age‐related hearing loss in the laboratory mouse. Audiology 1: 369 – 383.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.