Show simple item record

On Detection of Current and Next-Generation Botnets.

dc.contributor.authorZeng, Yuanyuanen_US
dc.date.accessioned2012-06-15T17:29:49Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2012-06-15T17:29:49Z
dc.date.issued2012en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91382
dc.description.abstractBotnets are one of the most serious security threats to the Internet and its end users. A botnet consists of compromised computers that are remotely coordinated by a botmaster under a Command and Control (C&C) infrastructure. Driven by financial incentives, botmasters leverage botnets to conduct various cybercrimes such as spamming, phishing, identity theft and Distributed-Denial-of-Service (DDoS) attacks. There are three main challenges facing botnet detection. First, code obfuscation is widely employed by current botnets, so signature-based detection is insufficient. Second, the C&C infrastructure of botnets has evolved rapidly. Any detection solution targeting one botnet instance can hardly keep up with this change. Third, the proliferation of powerful smartphones presents a new platform for future botnets. Defense techniques designed for existing botnets may be outsmarted when botnets invade smartphones. Recognizing these challenges, this dissertation proposes behavior-based botnet detection solutions at three different levels---the end host, the edge network and the Internet infrastructure---from a small scale to a large scale, and investigates the next-generation botnet targeting smartphones. It (1) addresses the problem of botnet seeding by devising a per-process containment scheme for end-host systems; (2) proposes a hybrid botnet detection framework for edge networks utilizing combined host- and network-level information; (3) explores the structural properties of botnet topologies and measures network components' capabilities of large-scale botnet detection at the Internet infrastructure level; and (4) presents a proof-of-concept mobile botnet employing SMS messages as the C&C and P2P as the topology to facilitate future research on countermeasures against next-generation botnets. The dissertation makes three primary contributions. First, the detection solutions proposed utilize intrinsic and fundamental behavior of botnets and are immune to malware obfuscation and traffic encryption. Second, the solutions are general enough to identify different types of botnets, not a specific botnet instance. They can also be extended to counter next-generation botnet threats. Third, the detection solutions function at multiple levels to meet various detection needs. They each take a different perspective but are highly complementary to each other, forming an integrated botnet detection framework.en_US
dc.language.isoen_USen_US
dc.subjectNetwork Securityen_US
dc.subjectMalwareen_US
dc.subjectBehavior-Based Botnet Detectionen_US
dc.subjectMachine Learningen_US
dc.subjectLarge-Scale Data Analyticsen_US
dc.titleOn Detection of Current and Next-Generation Botnets.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineComputer Science & Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberShin, Kang Geunen_US
dc.contributor.committeememberBailey, Michael Donalden_US
dc.contributor.committeememberMei, Qiaozhuen_US
dc.contributor.committeememberPrakash, Atulen_US
dc.subject.hlbsecondlevelComputer Scienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91382/1/gracez_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.