The Analysis of Adhesively Bonded Advance Composite Joints using Joint Finite Elements.
dc.contributor.author | Stapleton, Scott E. | en_US |
dc.date.accessioned | 2012-06-15T17:30:02Z | |
dc.date.available | NO_RESTRICTION | en_US |
dc.date.available | 2012-06-15T17:30:02Z | |
dc.date.issued | 2012 | en_US |
dc.date.submitted | 2012 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/91417 | |
dc.description.abstract | The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof–of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various joint configurations, including double cantilever beam and single lap joints. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Adhesively Bonded Joints | en_US |
dc.subject | Finite Element Analysis | en_US |
dc.title | The Analysis of Adhesively Bonded Advance Composite Joints using Joint Finite Elements. | en_US |
dc.type | Thesis | en_US |
dc.description.thesisdegreename | PhD | en_US |
dc.description.thesisdegreediscipline | Aerospace Engineering | en_US |
dc.description.thesisdegreegrantor | University of Michigan, Horace H. Rackham School of Graduate Studies | en_US |
dc.contributor.committeemember | Waas, Anthony M. | en_US |
dc.contributor.committeemember | Bednarcyk, Brett A. | en_US |
dc.contributor.committeemember | Garikipati, Krishnakumar R. | en_US |
dc.contributor.committeemember | Gustafson, Peter A. | en_US |
dc.contributor.committeemember | Sundararaghavan, Veera | en_US |
dc.subject.hlbsecondlevel | Aerospace Engineering | en_US |
dc.subject.hlbtoplevel | Engineering | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/91417/1/sstaple_1.pdf | |
dc.owningcollname | Dissertations and Theses (Ph.D. and Master's) |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.