Show simple item record

Autonomous Flight, Fault, and Energy Management of the Flying Fish Solar-Powered Seaplane.

dc.contributor.authorEubank, Ryan D.en_US
dc.date.accessioned2012-06-15T17:30:24Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2012-06-15T17:30:24Z
dc.date.issued2012en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91453
dc.description.abstractThe Flying Fish autonomous unmanned seaplane is designed and built for persistent ocean surveillance. Solar energy harvesting and always-on autonomous control and guidance are required to achieve unattended long-term operation. This thesis describes the Flying Fish avionics and software systems that enable the system to plan, self-initiate, and autonomously execute drift-flight cycles necessary to maintain a designated watch circle subject to environmentally influenced drift. We first present the avionics and flight software architecture developed for the unique challenges of an autonomous energy-harvesting seaplane requiring the system to be: waterproof, robust over a variety of sea states, and lightweight for flight. Seaplane kinematics and dynamics are developed based on conventional aircraft and watercraft and upon empirical flight test data. These models serve as the basis for development of flight control and guidance strategies which take the form of a cyclic multi-mode guidance protocol that smoothly transitions between nested gain-scheduled proportional-derivative feedback control laws tuned for the trim conditions of each flight mode. A fault-tolerant airspeed sensing system is developed in response to elevated failure rates arising from pitot probe water ingestion in the test environment. The fault-tolerance strategy utilizes sensor characteristics and signal energy to combine redundant sensor measurements in a weighted voting strategy, handling repeated failures, sensor recovery, non-homogenous sensors, and periods of complete sensing failure. Finally, a graph-based mission planner combines models of global solar energy, local ocean-currents, and wind with flight-verified/derived aircraft models to provide an energy-aware flight planning tool. An NP-hard asymmetric multi-visit traveling salesman planning problem is posed that integrates vehicle performance and environment models using energy as the primary cost metric. A novel A* search heuristic is presented to improve search efficiency relative to uniform cost search. A series of cases studies are conducted with surface and airborne goals for various times of day and for multi-day scenarios. Energy-optimal solutions are identified except in cases where energy harvesting produces multiple comparable-cost plans via negative-cost cycles. The always-on cyclic guidance/control system, airspeed sensor fault management algorithm, and the nested-TSP heuristic for A* are all critical innovation required to solve the posed research challenges.en_US
dc.language.isoen_USen_US
dc.subjectUAS, Unmanned Autonomous System, Unmanned Aerial Systemen_US
dc.subjectSeaplane, Floatplane, Flying Boaten_US
dc.subjectFault Tolerance, Guidance, Navigation, Controlen_US
dc.subjectSolar Energy, Energy-Aware Planning, Mission Planningen_US
dc.subjectAvioincs, FMS, Flight Management Systemen_US
dc.subjectUAV, Unmanned Autonomous Vehicle, Unmanned Aerial Vehicleen_US
dc.titleAutonomous Flight, Fault, and Energy Management of the Flying Fish Solar-Powered Seaplane.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineAerospace Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberAtkins, Ella Marieen_US
dc.contributor.committeememberBernal, Luis P.en_US
dc.contributor.committeememberBernstein, Dennis S.en_US
dc.contributor.committeememberKolmanovsky, Ilya Vladimiren_US
dc.contributor.committeememberMeadows, Guy A.en_US
dc.subject.hlbsecondlevelAerospace Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91453/1/eubankrd_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.