Show simple item record

Probing Charge Transport in Molecular Junctions.

dc.contributor.authorTan, Aaron Christopheren_US
dc.date.accessioned2012-06-15T17:30:32Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2012-06-15T17:30:32Z
dc.date.issued2012en_US
dc.date.submitted2012en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91468
dc.description.abstractWe present experimental work with a new atomic force microscope-based technique that attempts to elucidate the electronic structure of aromatic metal-molecule-metal junctions. In addition, we have also used this technique to perform preliminary studies on the relationship between the thermoelectric properties of molecular junctions and their molecular structure, the coupling strength of molecules to the electrodes, and the end groups of the molecule. The low-bias electrical conductance of junctions was found to be exponentially dependent on length and strongly affected by the coupling strength of the molecules to the electrodes. The low-bias electrical conductance of junctions was found to be exponentially dependent on length and strongly affected by the coupling strength of the molecules to the electrodes. The current-voltage characteristics of junctions of various molecular lengths were also analyzed using transition voltage spectroscopy. The transition voltage was found to decrease with increasing molecular length, indicating that the energetic separation between the chemical potential and the closest molecular orbital decreases with increasing length. Secondly, based on an analysis of our thermopower measurements using the Landauer model, electronic transport through aromatic thiols of various chain lengths was deduced to be HOMO dominated. The Seebeck coefficients for a series of dithiol molecules were also measured and were almost identical to corresponding values of the monothiol series. This suggests that coupling strength does not play a role in the magnitude of a junction’s thermopower, or equivalently, that the relative electronic alignment of molecular orbitals with respect to the Fermi level of the electrodes is unchanged by coupling strength. However, contact chemistry can play a significant role in molecular level alignment, as evidenced by the change in sign of the thermopower of a junction formed from an isocyanide-terminated monolayer. This sign change suggests a shift from HOMO- to LUMO-mediated transport in isocyanide molecules.en_US
dc.language.isoen_USen_US
dc.subjectMolecular Electronicsen_US
dc.subjectThermopoweren_US
dc.subjectAFMen_US
dc.subjectNanoscale Energy Transporten_US
dc.titleProbing Charge Transport in Molecular Junctions.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMaterials Science and Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberGreen, Peter F.en_US
dc.contributor.committeememberSangi Reddy, Pramoden_US
dc.contributor.committeememberGavini, Vikramen_US
dc.contributor.committeememberVan Der Ven, Antonen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91468/1/tanaaron_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.