Show simple item record

NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophages

dc.contributor.authorBrooks, Michelle N.en_US
dc.contributor.authorRajaram, Murugesan V. S.en_US
dc.contributor.authorAzad, Abul K.en_US
dc.contributor.authorAmer, Amal O.en_US
dc.contributor.authorValdivia‐arenas, Martin A.en_US
dc.contributor.authorPark, Jong‐hwanen_US
dc.contributor.authorNúñez, Gabrielen_US
dc.contributor.authorSchlesinger, Larry S.en_US
dc.date.accessioned2012-07-12T17:22:57Z
dc.date.available2012-07-12T17:22:57Z
dc.date.issued2011-03en_US
dc.identifier.citationBrooks, Michelle N.; Rajaram, Murugesan V. S.; Azad, Abul K.; Amer, Amal O.; Valdivia‐arenas, Martin A. ; Park, Jong‐hwan ; Núñez, Gabriel ; Schlesinger, Larry S. (2011). "NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophages." Cellular Microbiology 13(3). <http://hdl.handle.net/2027.42/92022>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92022
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.titleNOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophagesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, 4219 CCGC 0938, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Microbiologyen_US
dc.contributor.affiliationotherDorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USAen_US
dc.contributor.affiliationotherThe Division of Pulmonary, Critical Care and Sleep Medicineen_US
dc.contributor.affiliationotherDepartment of Internal Medicine, Division of Infectious Diseasesen_US
dc.contributor.affiliationotherCenter for Microbial Interface Biologyen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92022/1/j.1462-5822.2010.01544.x.pdf
dc.identifier.doi10.1111/j.1462-5822.2010.01544.xen_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferencePandey, A.K., Yang, Y., Jiang, Z., Fortune, S.M., Coulombe, F., Behr, M.A., et al. ( 2009 ) NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5: e1000500.en_US
dc.identifier.citedreferenceOgura, Y., Bonen, D.K., Inohara, N., Nicolae, D.L., Chen, F.F., Ramos, R., et al. ( 2001b ) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411: 603 – 606.en_US
dc.identifier.citedreferenceOlakanmi, O., Britigan, B.E., and Schlesinger, L.S. ( 2000 ) Gallium disrupts iron metabolism of mycobacteria residing within human macrophages. Infect Immun 68: 5619 – 5627.en_US
dc.identifier.citedreferenceOpitz, B., Puschel, A., Schmeck, B., Hocke, A.C., Rosseau, S., Hammerschmidt, S., et al. ( 2004 ) Nucleotide‐binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem 279: 36426 – 36432.en_US
dc.identifier.citedreferencePan, Q., Mathison, J., Fearns, C., Kravchenko, V.V., da Silva, C.J., Hoffman, H.M., et al. ( 2007 ) MDP‐induced interleukin‐1beta processing requires Nod2 and CIAS1/NALP3. J Leukoc Biol 82: 177 – 183.en_US
dc.identifier.citedreferencePauleau, A.L., and Murray, P.J. ( 2003 ) Role of nod2 in the response of macrophages to toll‐like receptor agonists. Mol Cell Biol 23: 7531 – 7539.en_US
dc.identifier.citedreferencePhiet, P.H., Wietzerbin, J., Zissman, E., Petit, J.F., and Lederer, E. ( 1976 ) Analysis of the cell wall of five strains of Myocbacterium tuberculosis BCG and of an attenuated human strain, W 115. Infect Immun 13: 677 – 681.en_US
dc.identifier.citedreferencePowlesland, A.S., Ward, E.M., Sadhu, S.K., Guo, Y., Taylor, M.E., and Drickamer, K. ( 2006 ) Widely divergent biochemical properties of the complete set of mouse DC‐SIGN‐related proteins. J Biol Chem 281: 20440 – 20449.en_US
dc.identifier.citedreferenceRajaram, M.V., Ganesan, L.P., Parsa, K.V., Butchar, J.P., Gunn, J.S., and Tridandapani, S. ( 2006 ) Akt/Protein kinase B modulates macrophage inflammatory response to Francisella infection and confers a survival advantage in mice. J Immunol 177: 6317 – 6324.en_US
dc.identifier.citedreferenceRajaram, M.V., Brooks, M.N., Morris, J.D., Torrelles, J.B., Azad, A.K., and Schlesinger, L.S. ( 2010 ) Mycobacterium tuberculosis activates human macrophage peroxisome proliferator‐activated receptor gamma linking mannose receptor recognition to regulation of immune responses. J Immunol 185: 929 – 942.en_US
dc.identifier.citedreferenceReginato, A.M., and Olsen, B.R. ( 2007 ) Genetics and experimental models of crystal‐induced arthritis. Lessons learned from mice and men: is it crystal clear? Curr Opin Rheumatol 19: 134 – 145.en_US
dc.identifier.citedreferenceRigamonti, E., Chinetti‐Gbaguidi, G., and Staels, B. ( 2008 ) Regulation of macrophage functions by PPAR‐alpha, PPAR‐gamma, and LXRs in mice and men. Arterioscler Thromb Vasc Biol 28: 1050 – 1059.en_US
dc.identifier.citedreferenceSartor, R.B. ( 2006 ) Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3: 390 – 407.en_US
dc.identifier.citedreferenceSchlesinger, L.S. ( 1993 ) Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150: 2920 – 2930.en_US
dc.identifier.citedreferenceSchlesinger, L.S., Bellinger‐Kawahara, C.G., Payne, N.R., and Horwitz, M.A. ( 1990 ) Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 144: 2771 – 2780.en_US
dc.identifier.citedreferenceSchneemann, M., and Schoeden, G. ( 2007 ) Macrophage biology and immunology: man is not a mouse. J Leukoc Biol 81: 579.en_US
dc.identifier.citedreferenceSchneemann, M., and Schoedon, G. ( 2002 ) Species differences in macrophage NO production are important. Nat Immunol 3: 102.en_US
dc.identifier.citedreferenceSimeone, R., Bottai, D., and Brosch, R. ( 2009 ) ESX/type VII secretion systems and their role in host–pathogen interaction. Curr Opin Microbiol 12: 4 – 10.en_US
dc.identifier.citedreferenceStrober, W., Murray, P.J., Kitani, A., and Watanabe, T. ( 2006 ) Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6: 9 – 20.en_US
dc.identifier.citedreferenceTeitelbaum, R., Cammer, M., Maitland, M.L., Freitag, N.E., Condeelis, J., and Bloom, B.R. ( 1999 ) Mycobacterial infection of macrophages results in membrane‐permeable phagosomes. Proc Natl Acad Sci USA 96: 15190 – 15195.en_US
dc.identifier.citedreferenceTill, A., Rosenstiel, P., Brautigam, K., Sina, C., Jacobs, G., Oberg, H.H., et al. ( 2008 ) A role for membrane‐bound CD147 in NOD2‐mediated recognition of bacterial cytoinvasion. J Cell Sci 121: 487 – 495.en_US
dc.identifier.citedreferenceTing, J.P., Duncan, J.A., and Lei, Y. ( 2010 ) How the noninflammasome NLRs function in the innate immune system. Science 327: 286 – 290.en_US
dc.identifier.citedreferenceTorrelles, J.B., Azad, A.K., Henning, L.N., Carlson, T.K., and Schlesinger, L.S. ( 2008 ) Role of C‐type lectins in mycobacterial infections. Curr Drug Targets 9: 102 – 112.en_US
dc.identifier.citedreferencevan der Wel, N., Hava, D., Houben, D., Fluitsma, D., van Zon, M., Pierson, J., et al. ( 2007 ) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129: 1287 – 1298.en_US
dc.identifier.citedreferenceWHO ( 2006 ) Clinical aspects of HIV/AIDS: pulmonary manifestations [WWW document]. URL http://www.searo.who.int/en/Section10/Section18/Section356/Section407_2230.htm.en_US
dc.identifier.citedreferenceYang, Y., Yin, C., Pandey, A., Abbott, D., Sassetti, C., and Kelliher, M.A. ( 2007 ) NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2. J Biol Chem 282: 36223 – 36229.en_US
dc.identifier.citedreferenceZhang, F.R., Huang, W., Chen, S.M., Sun, L.D., Liu, H., Li, Y., et al. ( 2009 ) Genomewide association study of leprosy. N Engl J Med 361: 2609 – 2618.en_US
dc.identifier.citedreferenceAbbott, D.W., Yang, Y., Hutti, J.E., Madhavarapu, S., Kelliher, M.A., and Cantley, L.C. ( 2007 ) Coordinated regulation of Toll‐like receptor and NOD2 signaling by K63‐linked polyubiquitin chains. Mol Cell Biol 27: 6012 – 6025.en_US
dc.identifier.citedreferenceAbdallah, A.M., Gey van Pittius, N.C., Champion, P.A., Cox, J., Luirink, J., Vandenbroucke‐Grauls, C.M., et al ( 2007 ) Type VII secretion – mycobacteria show the way. Nat Rev Microbiol 5: 883 – 891.en_US
dc.identifier.citedreferenceAmer, A., Franchi, L., Kanneganti, T.D., Body‐Malapel, M., Ozoren, N., Brady, G., et al. ( 2006 ) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281: 35217 – 35223.en_US
dc.identifier.citedreferenceAmer, A.O. ( 2010 ) Modulation of caspases and their non‐apoptotic functions by Legionella pneumophila. Cell Microbiol 12: 140 – 147.en_US
dc.identifier.citedreferenceAustin, C.M., Ma, X., and Graviss, E.A. ( 2008 ) Common nonsynonymous polymorphisms in the NOD2 gene are associated with resistance or susceptibility to tuberculosis disease in African Americans. J Infect Dis 197: 1713 – 1716.en_US
dc.identifier.citedreferenceBarnich, N., Aguirre, J.E., Reinecker, H.C., Xavier, R., and Podolsky, D.K. ( 2005 ) Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor‐{kappa}B activation in muramyl dipeptide recognition. J Cell Biol 170: 21 – 26.en_US
dc.identifier.citedreferenceBeharka, A.A., Gaynor, C.D., Kang, B.K., Voelker, D.R., McCormack, F.X., and Schlesinger, L.S. ( 2002 ) Pulmonary surfactant protein A up‐regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages. J Immunol 169: 3565 – 3573.en_US
dc.identifier.citedreferenceBogdan, C. ( 2001 ) Nitric oxide and the immune response. Nat Immunol 2: 907 – 916.en_US
dc.identifier.citedreferenceBoot, R.G., Bussink, A.P., Verhoek, M., de Boer, P.A., Moorman, A.F., and Aerts, J.M. ( 2005 ) Marked differences in tissue‐specific expression of chitinases in mouse and man. J Histochem Cytochem 53: 1283 – 1292.en_US
dc.identifier.citedreferenceBrieland, J., Freeman, P., Kunkel, R., Chrisp, C., Hurley, M., Fantone, J., et al. ( 1994 ) Replicative Legionella pneumophila lung infection in intratracheally inoculated A/J mice. A murine model of human Legionnaires' disease. Am J Pathol 145: 1537 – 1546.en_US
dc.identifier.citedreferenceCoulombe, F., Divangahi, M., Veyrier, F., de Leseleuc, L., Gleason, J.L., Yang, Y., et al. ( 2009 ) Increased NOD2‐mediated recognition of N ‐glycolyl muramyl dipeptide. J Exp Med 206: 1709 – 1716.en_US
dc.identifier.citedreferenceDao, D.N., Kremer, L., Guerardel, Y., Molano, A., Jacobs, W.R., Jr, Porcelli, S.A., et al. ( 2004 ) Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin‐12 production in macrophages. Infect Immun 72: 2067 – 2074.en_US
dc.identifier.citedreferenceDeshmukh, H.S., Hamburger, J.B., Ahn, S.H., McCafferty, D.G., Yang, S.R., and Fowler, V.G., Jr ( 2009 ) Critical role of NOD2 in regulating the immune response to Staphylococcus aureus. Infect Immun 77: 1376 – 1382.en_US
dc.identifier.citedreferenceDivangahi, M., Mostowy, S., Coulombe, F., Kozak, R., Guillot, L., Veyrier, F., et al. ( 2008 ) NOD2‐deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J Immunol 181: 7157 – 7165.en_US
dc.identifier.citedreferenceFenton, M.J., Riley, L.W., and Schlesinger, L.S. ( 2005 ) Receptor‐mediated recognition of Mycobacterium tuberculosis by host cells. In Tuberculosis and the Tubercle Bacillus. Cole, S.T., Eisenach, K.D., McMurray, D.N., and Jacobs, W.R., Jr (eds). New York: ASM Press, pp. 405 – 426.en_US
dc.identifier.citedreferenceFerwerda, G., Girardin, S.E., Kullberg, B.J., Le Bourhis, L., de Jong, D.J., Langenberg, D.M., et al. ( 2005 ) NOD2 and toll‐like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 1: 279 – 285.en_US
dc.identifier.citedreferenceFerwerda, G., Kramer, M., de Jong, D., Piccini, A., Joosten, L.A., Devesaginer, I., et al. ( 2008 ) Engagement of NOD2 has a dual effect on proIL‐1beta mRNA transcription and secretion of bioactive IL‐1beta. Eur J Immunol 38: 184 – 191.en_US
dc.identifier.citedreferenceFlesch, I.E.A., and Kaufmann, S.H.E. ( 1993 ) Role of cytokines in tuberculosis. Immunobiology 189: 316 – 339.en_US
dc.identifier.citedreferenceFranchi, L., Park, J.H., Shaw, M.H., Marina‐Garcia, N., Chen, G., Kim, Y.G., et al. ( 2008 ) Intracellular NOD‐like receptors in innate immunity, infection and disease. Cell Microbiol 10: 1 – 8.en_US
dc.identifier.citedreferenceGandotra, S., Jang, S., Murray, P.J., Salgame, P., and Ehrt, S. ( 2007 ) Nucleotide‐binding oligomerization domain protein 2‐deficient mice control infection with Mycobacterium tuberculosis. Infect Immun 75: 5127 – 5134.en_US
dc.identifier.citedreferenceGanguly, N., Giang, P.H., Gupta, C., Basu, S.K., Siddiqui, I., Salunke, D.M., et al. ( 2008 ) Mycobacterium tuberculosis secretory proteins CFP‐10, ESAT‐6 and the CFP10:ESAT6 complex inhibit lipopolysaccharide‐induced NF‐kappaB transactivation by downregulation of reactive oxidative species (ROS) production. Immunol Cell Biol 86: 98 – 106.en_US
dc.identifier.citedreferenceGavrilin, M.A., Bouakl, I.J., Knatz, N.L., Duncan, M.D., Hall, M.W., Gunn, J.S., et al. ( 2006 ) Internalization and phagosome escape required for Francisella to induce human monocyte IL‐1beta processing and release. Proc Natl Acad Sci USA 103: 141 – 146.en_US
dc.identifier.citedreferenceGavrilin, M.A., Mitra, S., Seshadri, S., Nateri, J., Berhe, F., Hall, M.W., et al. ( 2009 ) Pyrin critical to macrophage IL‐1beta response to Francisella challenge. J Immunol 182: 7982 – 7989.en_US
dc.identifier.citedreferenceGaynor, C.D., McCormack, F.X., Voelker, D.R., McGowan, S.E., and Schlesinger, L.S. ( 1995 ) Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J Immunol 155: 5343 – 5351.en_US
dc.identifier.citedreferenceGirardin, S.E., Boneca, I.G., Viala, J., Chamaillard, M., Labigne, A., Thomas, G., et al. ( 2003 ) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278: 8869 – 8872.en_US
dc.identifier.citedreferenceGutierrez, O., Pipaon, C., Inohara, N., Fontalba, A., Ogura, Y., Prosper, F., et al. ( 2002 ) Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor‐kappa B activation. J Biol Chem 277: 41701 – 41705.en_US
dc.identifier.citedreferenceHenning, L.N., Azad, A.K., Parsa, K.V., Crowther, J.E., Tridandapani, S., and Schlesinger, L.S. ( 2008 ) Pulmonary surfactant protein A regulates TLR expression and activity in human macrophages. J Immunol 180: 7847 – 7858.en_US
dc.identifier.citedreferenceHermon‐Taylor, J. ( 2009 ) Mycobacterium avium subspecies paratuberculosis, Crohn's disease and the Doomsday scenario. Gut Pathog 1: 15.en_US
dc.identifier.citedreferenceHerskovits, A.A., Auerbuch, V., and Portnoy, D.A. ( 2007 ) Bacterial ligands generated in a phagosome are targets of the cytosolic innate immune system. PLoS Pathog 3: e51.en_US
dc.identifier.citedreferenceHorwitz, M.A., and Silverstein, S.C. ( 1980 ) Legionnaries' disease bacterium ( Legionella pneumophila ) multiplies intracellularly in human monocytes. J Clin Invest 66: 441 – 450.en_US
dc.identifier.citedreferenceHruz, P., Zinkernagel, A.S., Jenikova, G., Botwin, G.J., Hugot, J.P., Karin, M., et al. ( 2009 ) NOD2 contributes to cutaneous defense against Staphylococcus aureus through alpha‐toxin‐dependent innate immune activation. Proc Natl Acad Sci USA 106: 12873 – 12878.en_US
dc.identifier.citedreferenceHsu, L.C., Ali, S.R., McGillivray, S., Tseng, P.H., Mariathasan, S., Humke, E.W., et al. ( 2008 ) A NOD2–NALP1 complex mediates caspase‐1‐dependent IL‐1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA 105: 7803 – 7808.en_US
dc.identifier.citedreferenceHu, C., Sun, L., Hu, Y., Lu, D., Wang, H., and Tang, S. ( 2010 ) Functional characterization of the NF‐kappaB binding site in the human NOD2 promoter. Cell Mol Immunol 7: 288 – 295.en_US
dc.identifier.citedreferenceHugot, J.P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J.P., Belaiche, J., et al. ( 2001 ) Association of NOD2 leucine‐rich repeat variants with susceptibility to Crohn's disease. Nature 411: 599 – 603.en_US
dc.identifier.citedreferenceInohara, N., and Nunez, G. ( 2003 ) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3: 371 – 382.en_US
dc.identifier.citedreferenceInohara, N., Ogura, Y., Fontalba, A., Gutierrez, O., Pons, F., Crespo, J., et al. ( 2003 ) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J Biol Chem 278: 5509 – 5512.en_US
dc.identifier.citedreferenceKang, P.B., Azad, A.K., Torrelles, J.B., Kaufman, T.M., Beharka, A., Tibesar, E., et al. ( 2005 ) The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan‐mediated phagosome biogenesis. J Exp Med 202: 987 – 999.en_US
dc.identifier.citedreferenceKapetanovic, R., Nahori, M.A., Balloy, V., Fitting, C., Philpott, D.J., Cavaillon, J.M., et al. ( 2007 ) Contribution of phagocytosis and intracellular sensing for cytokine production by Staphylococcus aureus ‐activated macrophages. Infect Immun 75: 830 – 837.en_US
dc.identifier.citedreferenceKarin, M., and Ben‐Neriah, Y. ( 2000 ) Phosphorylation meets ubiquitination: the control of NF‐[kappa]B activity. Annu Rev Immunol 18: 621 – 663.en_US
dc.identifier.citedreferenceKim, Y.G., Park, J.H., Shaw, M.H., Franchi, L., Inohara, N., and Nunez, G. ( 2008 ) The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll‐like receptor ligands. Immunity 28: 246 – 257.en_US
dc.identifier.citedreferenceKleinnijenhuis, J., Joosten, L.A., van de Veerdonk, F.L., Savage, N., van Crevel, R., Kullberg, B.J., et al. ( 2009 ) Transcriptional and inflammasome‐mediated pathways for the induction of IL‐1beta production by Mycobacterium tuberculosis. Eur J Immunol 39: 1914 – 1922.en_US
dc.identifier.citedreferenceKobayashi, K.S., Chamaillard, M., Ogura, Y., Henegariu, O., Inohara, N., Nunez, G., et al. ( 2005 ) Nod2‐dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307: 731 – 734.en_US
dc.identifier.citedreferenceKufer, T.A. ( 2008 ) Signal transduction pathways used by NLR‐type innate immune receptors. Mol Biosyst 4: 380 – 386.en_US
dc.identifier.citedreferenceLala, S., Dheda, K., Chang, J.S., Huggett, J.F., Kim, L.U., Johnson, M.A., et al. ( 2007 ) The pathogen recognition sensor, NOD2, is variably expressed in patients with pulmonary tuberculosis. BMC Infect Dis 7: 96.en_US
dc.identifier.citedreferenceLe, B.L., Benko, S., and Girardin, S.E. ( 2007 ) Nod1 and Nod2 in innate immunity and human inflammatory disorders. Biochem Soc Trans 35: 1479 – 1484.en_US
dc.identifier.citedreferenceLeake, E.S., Myrvik, Q.N., and Wright, M.J. ( 1984 ) Phagosomal membranes of Mycobacterium bovis BCG‐immune alveolar macrophages are resistant to disruption by Mycobacterium tuberculosis H37Rv. Infect Immun 45: 443 – 446.en_US
dc.identifier.citedreferenceLecine, P., Esmiol, S., Metais, J.Y., Nicoletti, C., Nourry, C., McDonald, C., et al. ( 2007 ) The NOD2–RICK complex signals from the plasma membrane. J Biol Chem 282: 15197 – 15207.en_US
dc.identifier.citedreferenceLegrand‐Poels, S., Kustermans, G., Bex, F., Kremmer, E., Kufer, T.A., and Piette, J. ( 2007 ) Modulation of Nod2‐dependent NF‐kappaB signaling by the actin cytoskeleton. J Cell Sci 120: 1299 – 1310.en_US
dc.identifier.citedreferenceLi, J., Moran, T., Swanson, E., Julian, C., Harris, J., Bonen, D.K., et al. ( 2004 ) Regulation of IL‐8 and IL‐1beta expression in Crohn's disease associated NOD2/CARD15 mutations. Hum Mol Genet 13: 1715 – 1725.en_US
dc.identifier.citedreferenceLoving, C.L., Osorio, M., Kim, Y.G., Nunez, G., Hughes, M.A., and Merkel, T.J. ( 2009 ) Nod1/Nod2‐mediated recognition plays a critical role in induction of adaptive immunity to anthrax after aerosol exposure. Infect Immun 77: 4529 – 4537.en_US
dc.identifier.citedreferenceMcDonough, K.A., Kress, Y., and Bloom, B.R. ( 1993 ) Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 61: 2763 – 2773.en_US
dc.identifier.citedreferenceMestas, J., and Hughes, C.C. ( 2004 ) Of mice and NOT MEN: differences between mouse and human immunology. J Immunol 172: 2731 – 2738.en_US
dc.identifier.citedreferenceMyrvik, Q.N., Leake, E.S., and Wright, M.J. ( 1984 ) Disruption of phagosomal membranes of normal alveolar macrophages by the H37Rv strain of Mycobacterium tuberculosis. A correlate of virulence. Am Rev Respir Dis 129: 322 – 328.en_US
dc.identifier.citedreferenceNakagawara, A., and Nathan, C.F. ( 1983 ) A simple method for counting adherent cells: application to cultured human monocytes, macrophages and multi‐nucleated giant cells. J Immunol Methods 56: 261 – 268.en_US
dc.identifier.citedreferenceNembrini, C., Kisielow, J., Shamshiev, A.T., Tortola, L., Coyle, A.J., Kopf, M., et al. ( 2009 ) The kinase activity of Rip2 determines its stability and consequently Nod1‐ and Nod2‐mediated immune responses. J Biol Chem 284: 19183 – 19188.en_US
dc.identifier.citedreferenceOgura, Y., Inohara, N., Benito, A., Chen, F.F., Yamaoka, S., and Nunez, G. ( 2001a ) Nod2, a Nod1/Apaf‐1 family member that is restricted to monocytes and activates NF‐kappaB. J Biol Chem 276: 4812 – 4818.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.