Ubiquitin‐Independent Entry into the Yeast Recycling Pathway
dc.contributor.author | Chen, Linyi | en_US |
dc.contributor.author | Davis, Nicholas G. | en_US |
dc.date.accessioned | 2012-07-12T17:22:59Z | |
dc.date.available | 2012-07-12T17:22:59Z | |
dc.date.issued | 2002-02 | en_US |
dc.identifier.citation | Chen, Linyi; Davis, Nicholas G. (2002). "Ubiquitin‐Independent Entry into the Yeast Recycling Pathway." Traffic 3(2). <http://hdl.handle.net/2027.42/92023> | en_US |
dc.identifier.issn | 1398-9219 | en_US |
dc.identifier.issn | 1600-0854 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/92023 | |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.subject.other | Yeast | en_US |
dc.subject.other | Endocytosis | en_US |
dc.subject.other | Lysosome | en_US |
dc.subject.other | MVB | en_US |
dc.subject.other | Pheromones | en_US |
dc.subject.other | Recycling | en_US |
dc.subject.other | Ubiquitin | en_US |
dc.subject.other | Vacuole | en_US |
dc.title | Ubiquitin‐Independent Entry into the Yeast Recycling Pathway | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Physiology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA | en_US |
dc.contributor.affiliationother | Departments of Surgery and Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/92023/1/j.1600-0854.2002.030204.x.pdf | |
dc.identifier.doi | 10.1034/j.1600-0854.2002.030204.x | en_US |
dc.identifier.source | Traffic | en_US |
dc.identifier.citedreference | Dunn R, Hicke L. Multiple roles for Rsp5p‐dependent ubiquitination at the internalization step of endocytosis. J Biol Chem 2001; 276: 25974 – 25981. | en_US |
dc.identifier.citedreference | Amerik AY, Nowak J, Swaminathan S, Hochstrasser M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein‐sorting and endocytic pathways. Mol Biol Cell 2000; 11: 3365 – 3380. | en_US |
dc.identifier.citedreference | Dupre S, Haguenauer‐Tsapis R. Deubiquitination step in the endocytic pathway of yeast plasma membrane proteins: crucial role of Doa4p ubiquitin isopeptidase. Mol Cell Biol 2001; 21: 4482 – 4494. | en_US |
dc.identifier.citedreference | Odorizzi G, Babst M, Emr SD. Fab1p PtdIns (3) P 5‐kinase function essential for protein sorting in the multivesicular body. Cell 1998; 95: 847 – 858. | en_US |
dc.identifier.citedreference | Stefan CJ, Blumer KJ. A syntaxin homolog encoded by VAM3 mediates down‐regulation of a yeast G protein‐coupled receptor. J Biol Chem 1999; 274: 1835 – 1841. | en_US |
dc.identifier.citedreference | Li Y, Kane T, Tipper C, Spatrick P, Jenness DD. Yeast mutants affecting possible quality control of plasma membrane proteins. Mol Cell Biol 1999; 19: 3588 – 3599. | en_US |
dc.identifier.citedreference | Losko S, Kopp F, Kranz A, Kolling R. Uptake of the ATP‐binding cassette (ABC) transporter Ste6 into the yeast vacuole is blocked in the doa4 Mutant. Mol Biol Cell 2001; 12: 1047 – 1059. | en_US |
dc.identifier.citedreference | Futter CE, Pearse A, Hewlett LJ, Hopkins CR. Multivesicular endosomes containing internalized EGF‐EGF receptor complexes mature and then fuse directly with lysosomes. J Cell Biol 1996; 132: 1011 – 1023. | en_US |
dc.identifier.citedreference | Panek HR, Stepp JD, Engle HM, Marks KM, Tan PK, Lemmon SK et al. Suppressors of YCK ‐encoded yeast casein kinase 1 deficiency define the four subunits of a novel clathrin AP‐like complex. EMBO J 1997; 16: 4194 – 4204. | en_US |
dc.identifier.citedreference | Mayor S, Presley JF, Maxfield FR. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J Cell Biol 1993; 121: 1257 – 1269. | en_US |
dc.identifier.citedreference | Gruenberg J, Maxfield FR. Membrane transport in the endocytic pathway. Curr Opin Cell Biol 1995; 7: 552 – 563. | en_US |
dc.identifier.citedreference | Reggiori F, Black MW, Pelham HR. Polar transmembrane domains target proteins to the interior of the yeast vacuole. Mol Biol Cell 2000; 11: 3737 – 3749. | en_US |
dc.identifier.citedreference | Katzmann DJ, Babst M, Emr SD. Ubiquitin‐dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT‐I. Cell 2001; 106: 145 – 155. | en_US |
dc.identifier.citedreference | Urbanowski JL, Piper RC. Ubiquitin sorts proteins into the intralumenal degradative compartment of the late‐endosome/vacuole. Traffic 2001; 2: 622 – 630. | en_US |
dc.identifier.citedreference | Reggiori F, Pelham HR. Sorting of proteins into multivesicular bodies: ubiquitin‐dependent and ‐independent targeting. EMBO J 2001; 20: 5176 – 5186. | en_US |
dc.identifier.citedreference | Griffiths G, Hoflack B, Simons K, Mellman I, Kornfeld S. The mannose 6‐phosphate receptor and the biogenesis of lysosomes. Cell 1988; 52: 329 – 341. | en_US |
dc.identifier.citedreference | Raymond CK, Howald‐Stevenson I, Vater CA, Stevens TH. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 1992; 3: 1389 – 1402. | en_US |
dc.identifier.citedreference | Piper RC, Cooper AA, Yang H, Stevens TH. VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J Cell Biol 1995; 131: 603 – 617. | en_US |
dc.identifier.citedreference | Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY, Beguinot L, Geiger B, Yarden Y. c‐Cbl/Sli‐1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 1998; 12: 3663 – 3674. | en_US |
dc.identifier.citedreference | Rocca A, Lamaze C, Subtil A, Dautry‐Varsat A. Involvement of the ubiquitin/proteasome system in sorting of the interleukin 2 receptor beta chain to late endocytic compartments. Mol Biol Cell 2001; 12: 1293 – 1301. | en_US |
dc.identifier.citedreference | Wach A, Brachat A, Pohlmann R, Philippsen P. New heterologous modules for classical or PCR‐based gene disruptions in Saccharomyces cerevisiae. Yeast 1994; 10: 1793 – 1808. | en_US |
dc.identifier.citedreference | Horton RM. In vitro recombination and mutagenesis of DNA. SOEing together tailor‐made genes. Meth Mol Biol 1997; 67: 141 – 149. | en_US |
dc.identifier.citedreference | Kunkel TA, Roberts JD, Zakour RA. Rapid and efficient site‐specific mutagenesis without phenotypic selection. Meth Enzymol 1987; 154: 367 – 382. | en_US |
dc.identifier.citedreference | Kuchler K, Sterne RE, Thorner J. Saccharomyces cerevisiae STE6 gene product: a novel pathway for protein export in eukaryotic cells. EMBO J 1989; 8: 3973 – 3984. | en_US |
dc.identifier.citedreference | Siliciano PG, Tatchell K. Transcription and regulatory signals at the mating type locus in yeast. Cell 1984; 37: 969 – 978. | en_US |
dc.identifier.citedreference | Bonifacino JS, Weissman AM. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev Cell Dev Biol 1998; 14: 19 – 57. | en_US |
dc.identifier.citedreference | Hicke L. Gettin′ down with ubiquitin: turning off cell‐surface receptors, transporters and channels. Trends Cell Biol 1999; 9: 107 – 112. | en_US |
dc.identifier.citedreference | Rotin D, Staub O, Haguenauer‐Tsapis R. Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin‐protein ligases. J Membr Biol 2000; 176: 1 – 17. | en_US |
dc.identifier.citedreference | Terrell J, Shih S, Dunn R, Hicke L. A function for monoubiquitination in the internalization of a G protein‐coupled receptor. Mol Cell 1998; 1: 193 – 202. | en_US |
dc.identifier.citedreference | Roth AF, Davis NG. Ubiquitination of the PEST‐like endocytosis signal of the yeast a ‐factor receptor. J Biol Chem 2000; 275: 8143 – 8153. | en_US |
dc.identifier.citedreference | Shih SC, Sloper‐Mould KE, Hicke L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J 2000; 19: 187 – 198. | en_US |
dc.identifier.citedreference | Galan J, Haguenauer‐Tsapis R. Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J 1997; 16: 5847 – 5854. | en_US |
dc.identifier.citedreference | Springael JY, Galan JM, Haguenauer‐Tsapis R, Andre B. NH4+‐induced down‐regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine‐63‐linked chains. J Cell Sci 1999; 112: 1375 – 1383. | en_US |
dc.identifier.citedreference | Roth AF, Davis NG. Ubiquitination of the yeast a ‐factor receptor. J Cell Biol 1996; 134: 661 – 674. | en_US |
dc.identifier.citedreference | Roth AF, Sullivan DM, Davis NG. A large PEST‐like sequence directs the ubiquitination, endocytosis, and vacuolar degradation of the yeast a ‐factor receptor. J Cell Biol 1998; 142: 949 – 961. | en_US |
dc.identifier.citedreference | Feng Y, Davis NG. Akr1p and the type I casein kinases act prior to the ubiquitination step of yeast endocytosis: Akr1p is required for kinase localization to the plasma membrane. Mol Cell Biol 2000; 20: 5350 – 5359. | en_US |
dc.identifier.citedreference | Hicke L, Riezman H. Ubiquitination of a yeast plasma membrane receptor signals its ligand‐stimulated endocytosis. Cell 1996; 84: 277 – 287. | en_US |
dc.identifier.citedreference | D'Hondt K, Heese‐Peck A, Riezman H. Protein and lipid requirements for endocytosis. Annu Rev Genet 2000; 34: 255 – 295. | en_US |
dc.identifier.citedreference | Davis NG, Horecka JL, Sprague GF Jr. Cis‐ and trans ‐acting functions required for endocytosis of the yeast pheromone receptors. J Cell Biol 1993; 122: 53 – 65. | en_US |
dc.identifier.citedreference | Tan PK, Howard JP, Payne GS. The sequence NPFXD defines a new class of endocytosis signal in Saccharomyces cerevisiae. J Cell Biol 1996; 135: 1789– 800. | en_US |
dc.identifier.citedreference | Paoluzi S, Castagnoli L, Lauro I, Salcini AE, Coda L, Fre S, Confalonieri S, Pelicci PG, Di Fiore PP, Cesareni G. Recognition specificity of individual EH domains of mammals and yeast. EMBO J 1998; 17: 6541 – 6550. | en_US |
dc.identifier.citedreference | Salcini AE, Confalonieri S, Doria M, Santolini E, Tassi E, Minenkova O, Cesareni G, Pelicci PG, Di Fiore PP. Binding specificity and in vivo targets of the EH domain, a novel protein–protein interaction module. Genes Dev 1997; 11: 2239 – 2249. | en_US |
dc.identifier.citedreference | Raths S, Rohrer J, Crausaz F, Riezman H. end3 and end4. two mutants defective in receptor‐mediated and fluid‐ phase endocytosis in Saccharomyces cerevisiae. J Cell Biol 1993; 120: 55 – 65. | en_US |
dc.identifier.citedreference | Wendland B, McCaffery JM, Xiao Q, Emr SD. A novel fluorescence‐activated cell sorter‐based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian Eps15. J Cell Biol 1996; 135: 1485 – 1500. | en_US |
dc.identifier.citedreference | Gagny B, Wiederkehr A, Dumoulin P, Winsor B, Riezman H, Haguenauer‐Tsapis R. A novel EH domain protein of Saccharomyces cerevisiae, Ede1p, involved in endocytosis. J Cell Sci 2000; 113: 3309 – 3319. | en_US |
dc.identifier.citedreference | Givan SA, Sprague GF. The ankyrin repeat‐containing protein Akr1p is required for the endocytosis of yeast pheromone receptors. Mol Biol Cell 1997; 8: 1317 – 1327. | en_US |
dc.identifier.citedreference | Chen L, Davis NG. Recycling of the yeast a ‐factor receptor. J Cell Biol 2000; 151: 731 – 738. | en_US |
dc.identifier.citedreference | Holtzman DA, Wertman KF, Drubin DG. Mapping actin surfaces required for functional interactions in vivo. J Cell Biol 1994; 126: 423 – 432. | en_US |
dc.identifier.citedreference | Ayscough KR, Stryker J, Pokala N, Sanders M, Crews P, Drubin DG. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin‐A. J Cell Biol 1997; 137: 399 – 416. | en_US |
dc.identifier.citedreference | Tang HY, Munn A, Cai M. EH domain proteins Pan1p and End3p are components of a complex that plays a dual role in organization of the cortical actin cytoskeleton and endocytosis in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17: 4294 – 4304. | en_US |
dc.identifier.citedreference | Chuang JS, Schekman RW. Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J Cell Biol 1996; 135: 597 – 610. | en_US |
dc.identifier.citedreference | Lewis MJ, Nichols BJ, Prescianotto‐Baschong C, Riezman H, Pelham HR. Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol Biol Cell 2000; 11: 23 – 38. | en_US |
dc.identifier.citedreference | Wiederkehr A, Avaro S, Prescianotto‐Baschong C, Haguenauer‐Tsapis R, Riezman H. The F‐box protein Rcy1p is involved in endocytic membrane traffic and recycling out of an early endosome in Saccharomyces cerevisiae. J Cell Biol 2000; 149: 397 – 410. | en_US |
dc.identifier.citedreference | Amerik AY, Li SJ, Hochstrasser M. Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae. Biol Chem 2000;381: 981 – 992. | en_US |
dc.identifier.citedreference | Hochstrasser M, Varshavsky A. In vivo degradation of a transcriptional regulator: the yeast α2 repressor. Cell 1990; 61: 697 – 708. | en_US |
dc.identifier.citedreference | Swaminathan S, Amerik AY, Hochstrasser M. The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol Biol Cell 1999; 10: 2583 – 2594. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.