Show simple item record

The interindividual variation in femoral neck width is associated with the acquisition of predictable sets of morphological and tissue‐quality traits and differential bone loss patterns

dc.contributor.authorEpelboym, Yanen_US
dc.contributor.authorGendron, R Nicholasen_US
dc.contributor.authorMayer, Jillianen_US
dc.contributor.authorFusco, Josephen_US
dc.contributor.authorNasser, Philipen_US
dc.contributor.authorGross, Garyen_US
dc.contributor.authorGhillani, Richarden_US
dc.contributor.authorJepsen, Karl Jen_US
dc.date.accessioned2012-07-12T17:23:00Z
dc.date.available2013-09-03T15:38:27Zen_US
dc.date.issued2012-07en_US
dc.identifier.citationEpelboym, Yan; Gendron, R Nicholas; Mayer, Jillian; Fusco, Joseph; Nasser, Philip; Gross, Gary; Ghillani, Richard; Jepsen, Karl J (2012). "The interindividual variation in femoral neck width is associated with the acquisition of predictable sets of morphological and tissue‐quality traits and differential bone loss patterns." Journal of Bone and Mineral Research 27(7): 1501-1510. <http://hdl.handle.net/2027.42/92024>en_US
dc.identifier.issn0884-0431en_US
dc.identifier.issn1523-4681en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92024
dc.description.abstractA better understanding of femoral neck structure and age‐related bone loss will benefit research aimed at reducing fracture risk. We used the natural variation in robustness (bone width relative to length) to analyze how adaptive processes covary traits in association with robustness, and whether the variation in robustness affects age‐related bone loss patterns. Femoral necks from 49 female cadavers (29–93 years of age) were evaluated for morphological and tissue‐level traits using radiography, peripheral quantitative computed tomography, micro–computed tomography, and ash‐content analysis. Femoral neck robustness was normally distributed and varied widely with a coefficient of variation of 14.9%. Age‐adjusted partial regression analysis revealed significant negative correlations ( p  < 0.05) between robustness and relative cortical area, cortical tissue‐mineral density (Ct.TMD), and trabecular bone mineral density (Ma.BMD). Path analysis confirmed these results showing that a one standard deviation (SD) increase in robustness was associated with a 0.70 SD decrease in RCA, 0.47 SD decrease in Ct.TMD, and 0.43 SD decrease in Ma.BMD. Significantly different bone loss patterns were observed when comparing the most slender and most robust tertiles. Robust femora showed significant negative correlations with age for cortical area ( R 2  = 0.29, p  < 0.03), Ma.BMD ( R 2  = 0.34, p  < 0.01), and Ct.TMD ( R 2  = 0.4, p  < 0.003). However, slender femora did not show these age‐related changes ( R 2  < 0.09, p  > 0.2). The results indicated that slender femora were constructed with a different set of traits compared to robust femora, and that the natural variation in robustness was a determinant of age‐related bone loss patterns. Clinical diagnoses and treatments may benefit from a better understanding of these robustness‐specific structural and aging patterns. © 2012 American Society for Bone and Mineral Research.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherSTRENGTHen_US
dc.subject.otherBIOMECHANICSen_US
dc.subject.otherFEMURen_US
dc.subject.otherAGINGen_US
dc.subject.otherROBUSTNESSen_US
dc.subject.otherBONE LOSSen_US
dc.subject.otherPQCTen_US
dc.subject.otherPATH ANALYSISen_US
dc.subject.otherFUNCTIONAL INTERACTIONSen_US
dc.titleThe interindividual variation in femoral neck width is associated with the acquisition of predictable sets of morphological and tissue‐quality traits and differential bone loss patternsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialitiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Orthopaedic Surgery, The University of Michigan, Room 2007, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109‐2200, USA.en_US
dc.contributor.affiliationotherMount Sinai School of Medicine, New York, NY, USAen_US
dc.contributor.affiliationotherThe Procter & Gamble Company, West Chester, OH, USAen_US
dc.identifier.pmid22461103en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92024/1/1614_ftp.pdf
dc.identifier.doi10.1002/jbmr.1614en_US
dc.identifier.sourceJournal of Bone and Mineral Researchen_US
dc.identifier.citedreferenceCourtney AC, Wachtel EF, Myers ER, Hayes WC. Effects of loading rate on strength of the proximal femur. Calcif Tissue Int. 1994; 55 ( 1 ): 53 – 8.en_US
dc.identifier.citedreferenceMelton LJ 3rd, Wahner HW, Richelson LS, O'Fallon WM, Riggs BL. Osteoporosis and the risk of hip fracture. Am J Epidemiol. 1986; 124 ( 2 ): 254 – 61.en_US
dc.identifier.citedreferenceAlbright F, Smith PH, Richardson AM. Post‐menopausal osteoporosis. Its clinical features. JAMA. 1941; 116: 2465 – 74.en_US
dc.identifier.citedreferenceDuan Y, Beck TJ, Wang XF, Seeman E. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res. 2003; 18 ( 10 ): 1766 – 74.en_US
dc.identifier.citedreferenceSzulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD. Low width of tubular bones is associated with increased risk of fragility fracture in elderly men—the MINOS study. Bone. 2006; 38 ( 4 ): 595 – 602.en_US
dc.identifier.citedreferenceRivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. J Bone Miner Res. 2007; 22 ( 11 ): 1781 – 90.en_US
dc.identifier.citedreferenceKaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, Cummings SR. Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res. 2008; 23 ( 12 ): 1892 – 04.en_US
dc.identifier.citedreferenceLaCroix AZ, Beck TJ, Cauley JA, Lewis CE, Bassford T, Jackson R, Wu G, Chen Z. Hip structural geometry and incidence of hip fracture in postmenopausal women: what does it add to conventional bone mineral density?. Osteoporos Int. 2010; 21 ( 6 ): 919 – 29.en_US
dc.identifier.citedreferenceJepsen KJ, Centi A, Duarte GF, Galloway K, Goldman H, Hampson N, Lappe JM, Cullen DM, Greeves J, Izard R, Nindl BC, Kraemer WJ, Negus CH, Evans RK. Biological constraints that limit compensation of a common skeletal trait variant lead to inequivalence of tibial function among healthy young adults. J Bone Miner Res. 2011; 26 ( 12 ): 2872 – 5.en_US
dc.identifier.citedreferenceJepsen KJ, Hu B, Tommasini SM, Courtland H‐W, Price C, Terranova CJ, Nadeau JH. Genetic randomization reveals functional relationships among morphologic and tissue‐quality traits that contribute to bone strength and fragility. Mamm Genome. 2007; 18 ( 6–7 ): 492 – 507.en_US
dc.identifier.citedreferenceJepsen KJ. Systems analysis of bone. Wiley Interdiscip Rev Syst Biol Med. 2009; 1 ( 1 ): 73 – 88.en_US
dc.identifier.citedreferenceKannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med. 1995; 123 ( 1 ): 27 – 31.en_US
dc.identifier.citedreferenceTommasini SM, Nasser P, Hu B, Jepsen KJ. Biological co‐adaptation of morphological and composition traits contributes to mechanical functionality and skeletal fragility. J Bone Miner Res. 2008; 23 ( 2 ): 236 – 46.en_US
dc.identifier.citedreferenceTommasini SM, Hu B, Nadeau JH, Jepsen KJ. Phenotypic integration among trabecular and cortical bone traits establishes mechanical functionality of inbred mouse vertebrae. J Bone Miner Res. 2009; 24 ( 4 ): 606 – 20.en_US
dc.identifier.citedreferenceZebaze RM, Jones A, Knackstedt M, Maalouf G, Seeman E. Construction of the femoral neck during growth determines its strength in old age. J Bone Miner Res. 2007; 22 ( 7 ): 1055 – 61.en_US
dc.identifier.citedreferenceChappard C, Bousson V, Bergot C, Mitton D, Marchadier A, Moser T, Benhamou CL, Laredo JD. Prediction of femoral fracture load: cross‐sectional study of texture analysis and geometric measurements on plain radiographs versus bone mineral density. Radiology. 2010; 255 ( 2 ): 536 – 43.en_US
dc.identifier.citedreferenceCheverud JM. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution. 1982; 36 ( 3 ): 499 – 516.en_US
dc.identifier.citedreferenceCurrey JD, Alexander RM. The thickness of the walls of tubular bones. J Zool. 1985; 206: 453 – 68.en_US
dc.identifier.citedreferencePearson OM. Activity, climate, and postcranial robusticity: implications for modern human origins and scenarios of adaptive change. Curr Anthropol. 2000; 41 ( 4 ): 569 – 07.en_US
dc.identifier.citedreferenceCrabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, Beck TJ, Reeve J. Intracapsular hip fracture and the region‐specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res. 2001; 16 ( 7 ): 1318 – 28.en_US
dc.identifier.citedreferenceLoveridge N, Power J, Reeve J, Boyde A. Bone mineralization density and femoral neck fragility. Bone. 2004; 35 ( 4 ): 929 – 41.en_US
dc.identifier.citedreferenceMayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J. Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet. 2005; 366 ( 9480 ): 129 – 35.en_US
dc.identifier.citedreferenceJohannesdottir F, Poole KE, Reeve J, Siggeirsdottir K, Aspelund T, Mogensen B, Jonsson BY, Sigurdsson S, Harris TB, Gudnason VG, Sigurdsson G. Distribution of cortical bone in the femoral neck and hip fracture: a prospective case‐control analysis of 143 incident hip fractures; the AGES‐REYKJAVIK Study. Bone. 2011; 48 ( 6 ): 1268 – 76.en_US
dc.identifier.citedreferenceThomas CD, Mayhew PM, Power J, Poole KE, Loveridge N, Clement JG, Burgoyne CJ, Reeve J. Femoral neck trabecular bone: loss with aging and role in preventing fracture. J Bone Miner Res. 2009; 24 ( 11 ): 1808 – 18.en_US
dc.identifier.citedreferenceBhola S, Chen J, Fusco J, Duarte GF, Andarawis‐Puri N, Ghillani R, Jepsen KJ. Variation in childhood skeletal robustness is an important determinant of cortical area in young adults. Bone. 2011; 49 ( 4 ): 799 – 809.en_US
dc.identifier.citedreferenceRuff C. Growth in bone strength, body size, and muscle size in a juvenile longitudinal sample. Bone. 2003; 33 ( 3 ): 317 – 29.en_US
dc.identifier.citedreferenceKeyak JH. Relationships between femoral fracture loads for two load configurations. J Biomech. 2000; 33 ( 4 ): 499 – 502.en_US
dc.identifier.citedreferencePulkkinen P, Gluer CC, Jamsa T. Investigation of differences between hip fracture types: a worthy strategy for improved risk assessment and fracture prevention. Bone. 2011; 49 ( 4 ): 600 – 4.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.