Show simple item record

Loss of enteral nutrition in a mouse model results in intestinal epithelial barrier dysfunction

dc.contributor.authorFeng, Yongjiaen_US
dc.contributor.authorRalls, Matthew W.en_US
dc.contributor.authorXiao, Weidongen_US
dc.contributor.authorMiyasaka, Eiichien_US
dc.contributor.authorHerman, Richard S.en_US
dc.contributor.authorTeitelbaum, Daniel H.en_US
dc.date.accessioned2012-07-12T17:23:15Z
dc.date.available2013-09-03T15:38:27Zen_US
dc.date.issued2012-07en_US
dc.identifier.citationFeng, Yongjia; Ralls, Matthew W.; Xiao, Weidong; Miyasaka, Eiichi; Herman, Richard S.; Teitelbaum, Daniel H. (2012). "Loss of enteral nutrition in a mouse model results in intestinal epithelial barrier dysfunction." Annals of the New York Academy of Sciences 1258(1). <http://hdl.handle.net/2027.42/92032>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92032
dc.publisherBlackwell Publishing Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherEpithelial Barrier Functionen_US
dc.subject.otherParenteral Nutritionen_US
dc.subject.otherP‐Akten_US
dc.subject.otherSmall Intestineen_US
dc.titleLoss of enteral nutrition in a mouse model results in intestinal epithelial barrier dysfunctionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Surgery, Section of Pediatric Surgery, University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92032/1/j.1749-6632.2012.06572.x.pdf
dc.identifier.doi10.1111/j.1749-6632.2012.06572.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceNose, K. et al. 2010. Glutamine prevents total parenteral nutrition‐associated changes to intraepithelial lymphocyte phenotype and function: a potential mechanism for the preservation of epithelial barrier function. J. Interferon Cytokine Res. 30: 67 – 80.en_US
dc.identifier.citedreferenceKristof, K. et al. 2011. Impact of molecular mimicry on the clinical course and outcome of sepsis syndrome. Mol. Immunol. 49: 512 – 517.en_US
dc.identifier.citedreferenceBuchman, A.L. et al. 1995. Parenteral nutrition is associated with intestinal morphologic and functional changes in humans. JPEN J. Parenter Enteral Nutr. 19: 453 – 460.en_US
dc.identifier.citedreferenceChang, F. et al. 2003. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17: 590 – 603.en_US
dc.identifier.citedreferenceBouchard, V. et al. 2008. B1 integrin/Fak/Src signaling in intestinal epithelial crypt cell survival: integration of complex regulatory mechanisms. Apoptosis 13: 531 – 542.en_US
dc.identifier.citedreferenceMcDunn, J. et al. 2008. Peptide‐mediated activation of Akt and extracellular regulated kinase signaling prevents lymphocyte apoptosis. FASEB J. 22: 561 – 568.en_US
dc.identifier.citedreferenceRexhepaj, R. et al. 2007. PI3‐kinase‐dependent electrogenic intestinal transport of glucose and amino acids. Pflugers Arch. 453: 863 – 870.en_US
dc.identifier.citedreferenceItoh, M. et al. 1997. Involvement of ZO‐1 in cadherin‐based cell adhesion through its direct binding to alpha catenin and actin filaments. J. Cell Biol. 138: 181 – 192.en_US
dc.identifier.citedreferenceZeissig, S. et al. 2007. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut 56: 61 – 72.en_US
dc.identifier.citedreferenceMarkov, A.G. et al. 2010. Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine. J. Comp. Physiol. B. 180: 591 – 598.en_US
dc.identifier.citedreferenceSmyth, D. et al. 2011. Interferon‐gamma‐induced increases in intestinal epithelial macromolecular permeability requires the Src kinase Fyn. Lab Invest. 91: 764 – 777.en_US
dc.identifier.citedreferenceMcKay, D.M. et al. 2007. Phosphatidylinositol 3’‐kinase is a critical mediator of interferon‐gamma‐induced increases in enteric epithelial permeability. J. Pharmacol Exp. Ther. 320: 1013 – 1022.en_US
dc.identifier.citedreferenceCario, E., G. Gerken & D. Podolsky. 2007. Toll‐like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132: 1359 – 1374.en_US
dc.identifier.citedreferenceArbibe, L. et al. 2000. Toll‐like receptor 2‐mediated NF‐kappa B activation requires a Rac1‐dependent pathway. Nat. Immunol. 1: 533 – 540.en_US
dc.identifier.citedreferenceMalo, M.S. et al. 2010. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut 59: 1476 – 1484.en_US
dc.identifier.citedreferenceWildhaber, B.E. et al. 2005. Lack of enteral nutrition–effects on the intestinal immune system. J. Surg. Res. 123: 8 – 16.en_US
dc.identifier.citedreferenceYasumatsu, K. et al. 2009. Multiple receptors underlie glutamate taste responses in mice. Am. J. Clin. Nutr. 90: 747S ‐ 752S.en_US
dc.identifier.citedreferenceWu, S.V. et al. 2002. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC‐1 cells. Proc. Natl. Acad. Sci. USA 99: 2392 – 2397.en_US
dc.identifier.citedreferenceFujita, Y. et al. 2009. Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo. Am. J. Physiol. Endocrinol. Metab. 296: E473 – E479.en_US
dc.identifier.citedreferenceMargolskee, R.F. et al. 2007. T1R3 and gustducin in gut sense sugars to regulate expression of Na+‐glucose cotransporter 1. Proc. Natl. Acad. Sci. USA 104: 15075 – 15080.en_US
dc.identifier.citedreferenceXue, H. & C.J. Field. 2011. New role of glutamate as an immunoregulator via glutamate receptors and transporters. Front Biosci. (Schol Ed). 3: 1007 – 1020.en_US
dc.identifier.citedreferenceAkiba, Y. et al. 2009. Luminal L‐glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats. Am. J. Physiol. Gastrointest Liver Physiol. 297: G781 – G791.en_US
dc.identifier.citedreferenceWang, J.H. et al. 2011. Umami receptor activation increases duodenal bicarbonate secretion via glucagon‐like peptide‐2 release in rats. J. Pharmacol Exp. Ther. 339: 464 – 473.en_US
dc.identifier.citedreferenceVermeulen, M.A. et al. 2011. Glutamate reduces experimental intestinal hyperpermeability and facilitates glutamine support of gut integrity. World J. Gastroenterol. 17: 1569 – 1573.en_US
dc.identifier.citedreferenceBraga, M. et al. 2009. ESPEN Guidelines on Parenteral Nutrition: surgery. Clin. Nutr. 28: 378 – 386.en_US
dc.identifier.citedreferenceDuro, D., D. Kamin & C. Duggan. 2008. Overview of pediatric short bowel syndrome. J. Pediatr. Gastroenterol Nutr. 47 ( Suppl. 1 ): S33 – S36.en_US
dc.identifier.citedreferenceSpencer, A. et al. 2005. Mortality and outcomes of pediatric short bowel syndrome: redefining predictors of success. Ann. Surg. 242: 1 – 10.en_US
dc.identifier.citedreferenceGogos, C.A. & F. Kalfarentzos. 1995. Total parenteral nutrition and immune system activity: a review. Nutrition 11: 339 – 344.en_US
dc.identifier.citedreferenceThe Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. 1991. Perioperative total parenteral nutrition in surgical patients. N. Engl. J. Med. 325: 525 – 532.en_US
dc.identifier.citedreferenceWildhaber, B.E. et al. 2002. TPN‐induced apoptosis in mouse intestinal epithelium: regulation by the BCL‐2 protein family. Ped. Surg. Int. 18: 570 – 575.en_US
dc.identifier.citedreferenceYang, H. et al. 2002. Interferon‐gamma expression by intraepithelial lymphocytes results in a loss of epithelial barrier function in a mouse model of total parenteral nutrition. Ann. Surg. 236: 226 – 234.en_US
dc.identifier.citedreferenceFeng, Y. & D.H. Teitelbaum. 2012. Epidermal growth factor/TNF‐alpha transactivation modulates epithelial cell proliferation and apoptosis in a mouse model of parenteral nutrition. Am. J. Physiol. Gastrointest Liver Physiol 302: G236 – G249.en_US
dc.identifier.citedreferenceYang, H. & D.H. Teitelbaum. 2003. Intraepithelial lymphocyte‐derived interferon‐gamma evokes enterocyte apoptosis with parenteral nutrition in mice. Am. J. Physiol. Gastrointest Liver Physiol. 284: G629 – G637.en_US
dc.identifier.citedreferenceLi, J. et al. 1995. Effect of parenteral and enteral nutrition on gut‐associated lymphoid tissue. J. Trauma 39: 44 – 51.en_US
dc.identifier.citedreferenceFeng, Y., J.E. McDunn & D.H. Teitelbaum. 2010. Decreased phospho‐Akt signaling in a mouse model of total parenteral nutrition: a potential mechanism for the development of intestinal mucosal atrophy. Am. J. Physiol. Gastrointest Liver Physiol. 298: G833 – G841.en_US
dc.identifier.citedreferenceSun, X. et al. 2008. Decline in intestinal mucosal IL‐10 expression and decreased intestinal barrier function in a mouse model of total parenteral nutrition. Am. J. Physiol. Gastrointest Liver Physiol. 294: G139 – G147 PMID: 17991705.en_US
dc.identifier.citedreferenceFeng, Y. et al. 2009. Dissociation of E‐Cadherin and beta‐catenin in a mouse model of total parenteral nutrition: a mechanism for the loss of epithelial cell proliferation and villus atrophy. J. Physiol. (London) 587: 641 – 654.en_US
dc.identifier.citedreferenceMiyasaka, E. et al. 2011. Total parenteral nutrition (TPN) in a mouse model leads to major population shifts in the intestinal microbiome. Gastroenterology 140: 1.en_US
dc.identifier.citedreferenceMiyasaka, E. et al. 2010. Removal of enteral nutrition with total parenteral nutrition in mice leads to changes in bacterial flora and an associated increased toll‐like receptors in the small intestinal lamina propria. Gastroenterology 138: S‐608 – S‐609.en_US
dc.identifier.citedreferenceMiyasaka, E. & D. Teitelbaum. 2010. Loss of small‐intestine lamina propria T‐regulatory cells in a mouse‐model of total parenteral nutrition (TPN). J. Surg. Res. 158: 330.en_US
dc.identifier.citedreferenceMiyasaka, E., Y. Feng & D. Teitelbaum. 2011. Total Parenteral nutrition in a mouse model results in a proinflammatory state in the lamina propria: a Myd88‐dependent mechanisms of action [abstract]. Surgery In press.en_US
dc.identifier.citedreferenceMcElroy, S.J. et al. 2008. Tumor necrosis factor inhibits ligand‐stimulated EGF receptor activation through a TNF receptor 1‐dependent mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 295: G285 – G293.en_US
dc.identifier.citedreferenceYamaoka, T. et al. 2008. Transactivation of EGF receptor and ErbB2 protects intestinal epithelial cells from TNF‐induced apoptosis. Proc. Natl. Acad. Sci. USA 105: 11772 – 11777.en_US
dc.identifier.citedreferenceYang, H. et al. 2004. Intestinal intraepithelial lymphocyte gamma delta‐T cell‐derived keratinocyte growth factor modulates epithelial growth in the mouse. J. Immunol. 172: 4151 – 4158.en_US
dc.identifier.citedreferenceYang, H., B.E. Wildhaber & D.H. Teitelbaum. 2003. Keratinocyte growth factor improves epithelial function after massive small bowel resection. J. Parenter Enteral Nutr. 27: 198 – 206.en_US
dc.identifier.citedreferenceYang, H. et al. 2002. 2002 Harry M. Vars Research Award. Keratinocyte growth factor stimulates the recovery of epithelial structure and function in a mouse model of total parenteral nutrition. JPEN J. Parenter Enteral Nutr. 26: 333 – 340; discussion 340–331.en_US
dc.identifier.citedreferenceFeng, Y., J. Holst & D. Teitelbaum. 2011. Total parenteral nutrition (TPN)‐associated atrophy is associated with loss of intestinal epithelial cell (EC) migration: modulation of action by epidermal growth factor (EGF) and glucagon‐like peptide‐2(GLP‐2). Gastroenterology 140: S‐170 – S‐171.en_US
dc.identifier.citedreferenceTsai, C., M. Hill & K. Drucker. 1997. Biological determinants of intestinotrophic properties of GLP‐2 in vivo. Am. J. Physiol. 272: G662 – G668.en_US
dc.identifier.citedreferenceBrubaker, P. et al. 1997. Circulating and tissue forms of the intestinal growth factor, glucagon‐like peptide‐2. Endocrinology 138: 4837 – 4843.en_US
dc.identifier.citedreferenceYang, H., R. Finaly & D.H. Teitelbaum. 2003. Alteration in epithelial permeability and ion transport in a mouse model of total parenteral nutrition. Crit. Care Med. 31: 1118 – 1125.en_US
dc.identifier.citedreferenceKudsk, K.A. et al. 1992. Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann. Surg. 215: 503 – 511; discussion 511–503.en_US
dc.identifier.citedreferenceKiristioglu, I. et al. 2002. Total parenteral nutrition‐associated changes in mouse intestinal intraepithelial lymphocytes. Dig. Dis. Sci. 47: 1147 – 1157.en_US
dc.identifier.citedreferenceKiristioglu, I. & D.H. Teitelbaum. 1998. Alteration of the intestinal intraepithelial lymphocytes during total parenteral nutrition. J. Surg. Res. 79: 91 – 96.en_US
dc.identifier.citedreferenceClayburgh, D.R., L. Shen & J.R. Turner. 2004. A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest. 84: 282 – 291.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.