Show simple item record

Evolution of the life cycle in land plants

dc.contributor.authorQiu, Yin‐longen_US
dc.contributor.authorTaylor, Alexander B.en_US
dc.contributor.authorMcMANUS, Hilary A.en_US
dc.date.accessioned2012-07-12T17:23:32Z
dc.date.available2013-07-01T14:33:05Zen_US
dc.date.issued2012-05en_US
dc.identifier.citationQiu, Yin‐long ; Taylor, Alexander B. ; McMANUS, Hilary A. (2012). "Evolution of the life cycle in land plants." Journal of Systematics and Evolution 50(3). <http://hdl.handle.net/2027.42/92043>en_US
dc.identifier.issn1674-4918en_US
dc.identifier.issn1759-6831en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92043
dc.publisherBlackwell Publishing Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherHaploidyen_US
dc.subject.otherLand Plantsen_US
dc.subject.otherDiploidyen_US
dc.subject.otherEvolutionen_US
dc.subject.otherLife Cycleen_US
dc.titleEvolution of the life cycle in land plantsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum(Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA)en_US
dc.contributor.affiliationother(Department of Biological Sciences, Le Moyne College, Syracuse, NY 13214, USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92043/1/j.1759-6831.2012.00188.x.pdf
dc.identifier.doi10.1111/j.1759-6831.2012.00188.xen_US
dc.identifier.sourceJournal of Systematics and Evolutionen_US
dc.identifier.citedreferenceRinard RG. 1981. The problem of the organic individual: Ernst Haeckel and the development of the biogenetic law. Journal of the History of Biology 14: 249 – 275.en_US
dc.identifier.citedreferenceTanurdzic M, Banks JA. 2004. Sex‐determining mechanisms in land plants. Plant Cell 16: S61 – S71.en_US
dc.identifier.citedreferenceTaylor TN, Kerp H, Hass H. 2005. Life history biology of early land plants: Deciphering the gametophyte phase. Proceedings of the National Academy of Sciences USA 102: 5892 – 5897.en_US
dc.identifier.citedreferenceTaylor WA. 1995. Spores in earliest land plants. Nature 373: 391 – 392.en_US
dc.identifier.citedreferenceTaylor WA. 2003. Ultrastructure of selected Silurian trilete spores and the putative Ordovician trilete spore Virgatasporites. Review of Palaeobotany and Palynology 126: 211 – 223.en_US
dc.identifier.citedreferenceTheissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H. 2000. A short history of MADS‐box genes in plants. Plant Molecular Biology 42: 115 – 149.en_US
dc.identifier.citedreferenceTryon AF, Lugardon B. 1991. Spores of the pteridophyta. New York: Springer.en_US
dc.identifier.citedreferenceTurmel M, Pombert JF, Charlebois P, Otis C, Lemieux C. 2007. The green algal ancestry of land plants as revealed by the chloroplast genome. International Journal of Plant Sciences 168: 679 – 689.en_US
dc.identifier.citedreferenceVan Beneden E. 1883. Recherches sur la maturation de l’oeuf et la fécondation. Ascaris megalocephala. Archives de Biologie 4: 265 – 640.en_US
dc.identifier.citedreferencevan den Hoek C, Mann DG, Jahns HM. 1995. Algae: An introduction to phycology. Cambridge: Cambridge University Press.en_US
dc.identifier.citedreferenceVeit B, Briggs SP, Schmidt RJ, Yanofsky MF, Hake S. 1998. Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature 393: 166 – 168.en_US
dc.identifier.citedreferenceWalter KS. 1983. Orchidaceae. In: Janzen DH ed. Costa Rican natural history. Chicago: The University of Chicago Press. 282 – 292.en_US
dc.identifier.citedreferenceWang B, Yeun LH, Xue J‐Y, Liu Y, Ané JM, Qiu Y‐L. 2010. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytologist 186: 514 – 525.en_US
dc.identifier.citedreferenceWatanabe Y, Yamamoto M. 1994. S. pombe mei2 + encodes an RNA‐binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78: 487 – 498.en_US
dc.identifier.citedreferenceWellman CH, Osterloff PL, Mohiuddin U. 2003. Fragments of the earliest land plants. Nature 425: 282 – 285.en_US
dc.identifier.citedreferenceWiens JJ. 2004. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58: 193 – 197.en_US
dc.identifier.citedreferenceWilson MA, Makova KD. 2009. Genomic analyses of sex chromosome evolution. Annual Review of Genomics and Human Genetics 10: 333 – 354.en_US
dc.identifier.citedreferenceWodniok S, Brinkmann H, Glockner G, Heidel AJ, Philippe H, Melkonian M, Becker B. 2011. Origin of land plants: Do conjugating green algae hold the key? BMC Evolutionary Biology 11: 104.en_US
dc.identifier.citedreferenceWolf PG, Karol KG, Mandoli DF, Kuehl J, Arumuganathan K, Ellis MW, Mishler BD, Kelch DG, Olmstead RG, Boore JL. 2005. The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene 350: 117 – 128.en_US
dc.identifier.citedreferenceYamanouchi S. 1906a. The life history of Polysiphonia violacea. Contributions from the Hull Botanical Laboratory LXXXIII. Botanical Gazette 41: 425 – 433.en_US
dc.identifier.citedreferenceYamanouchi S. 1906b. The life history of Polysiphonia violacea. Contributions from the Hull Botanical Laboratory LXXXVII. Botanical Gazette 42: 401 – 448.en_US
dc.identifier.citedreferenceYoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution 21: 809 – 818.en_US
dc.identifier.citedreferenceZeyl C, Vanderford T, Carter M. 2003. An evolutionary advantage of haploidy in large yeast populations. Science 299: 555 – 558.en_US
dc.identifier.citedreferenceZipfel C. 2008. Pattern‐recognition receptors in plant innate immunity. Current Opinion in Immunology 20: 10 – 16.en_US
dc.identifier.citedreferenceAdl SM, Simpson AGB, Farmer MA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley‐Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology 52: 399 – 451.en_US
dc.identifier.citedreferenceAlexopoulos CJ, Mims CW, Blackwell M. 1996. Introductory mycology. New York: John Wiley & Sons.en_US
dc.identifier.citedreferenceAlgeo TJ, Scheckler SE, Maynard JB. 2001. Effects of the middle to late Devonian spread of vascular land plants on weathering regimes, marine biotas, and global climate. In: Gensel PG, Edwards D eds. Plants invade the land: Evolutionary and environmental perspectives. New York: Columbia University Press. 213 – 236.en_US
dc.identifier.citedreferenceAndersen RA. 2004. Biology and systematics of heterokont and haptophyte algae. American Journal of Botany 91: 1508 – 1522.en_US
dc.identifier.citedreferenceAndersson JO, Sarchfield SW, Roger AJ. 2005. Gene transfers from Nanoarchaeota to an ancestor of diplomonads and parabasalids. Molecular Biology and Evolution 22: 85 – 90.en_US
dc.identifier.citedreferenceBaldauf SL. 2003. The deep roots of eukaryotes. Science 300: 1703 – 1706.en_US
dc.identifier.citedreferenceBaldauf SL. 2008. An overview of the phylogeny and diversity of eukaryotes. Journal of Systematics and Evolution 46: 263 – 273.en_US
dc.identifier.citedreferenceBaldauf SL, Bhattacharya D, Cockrill J, Hugenholtz P, Pawlowski J, Simpson AGB. 2004. The tree of life: An overview. In: Cracraft J, Donoghue MJ eds. Assembling the tree of life. New York: Oxford University Press. 43 – 75.en_US
dc.identifier.citedreferenceBateman RM, Dimichele WA. 1994. Heterospory: The most iterative key innovation in the evolutionary history of the plant kingdom. Biological Reviews 69: 315 – 417.en_US
dc.identifier.citedreferenceBeerling DJ, Osborne CP, Chaloner WG. 2001. Evolution of leaf‐form in land plants linked to atmospheric CO 2 decline in the Late Palaeozoic era. Nature 410: 352 – 354.en_US
dc.identifier.citedreferenceBell G. 1994. The comparative biology of the alternation of generations. In: Kirkpatrick M ed. Lectures on mathematics in the life sciences: The evolution of haploid–diploid life cycles, 25. Providence: American Mathematical Society. 1 – 26.en_US
dc.identifier.citedreferenceBerner RA. 2001. The effect of the rise of land plants on atmospheric CO 2 during the Paleozoic. In: Gensel PG, Edwards D eds. Plants invade the land: Evolutionary and environmental perspectives. New York: Columbia University Press. 173 – 178.en_US
dc.identifier.citedreferenceBierhorst DW. 1968. On the Stromatopteridaceae (fam. nov.) and on the Psilotaceae. Phytomorphology 18: 232 – 268.en_US
dc.identifier.citedreferenceBold HC. 1940. The nutrition of the sporophyte in the Musci. American Journal of Botany 27: 318 – 322.en_US
dc.identifier.citedreferenceBold HC, Wynne MJ. 1985. Introduction to the algae. Engelwood Cliffs: Prentice‐Hall.en_US
dc.identifier.citedreferenceBonner JT. 1965. Size and cycle: An essay on the structure of biology. Princeton: Princeton University Press.en_US
dc.identifier.citedreferenceBowe LM, Coat G, dePamphilis CW. 2000. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proceedings of the National Academy of Sciences USA 97: 4092 – 4097.en_US
dc.identifier.citedreferenceBower FO. 1890. On antithetic as distinct from homologous alternation of generations in plants. Annals of Botany 4: 347 – 370.en_US
dc.identifier.citedreferenceBower FO. 1897. Studies in the morphology of spore‐producing members. III. Marattiaceae. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 189: 35 – 81.en_US
dc.identifier.citedreferenceBower FO. 1900. Studies in the morphology of spore‐producing members. IV. The leptosporangiate ferns. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 192: 29 – 138.en_US
dc.identifier.citedreferenceBower FO. 1908. The origin of a land flora: A theory based upon the facts of alternation. London: MacMillan.en_US
dc.identifier.citedreferenceBower FO. 1935. Primitive land plants, also known as the Archegoniatae. London: MacMillan.en_US
dc.identifier.citedreferenceBoyce CK. 2008. How green was Cooksonia ? The importance of size in understanding the early evolution of physiology in the vascular plant lineage. Paleobiology 34: 179 – 194.en_US
dc.identifier.citedreferenceBremer K. 1985. Summary of green plant phylogeny and classification. Cladistics 1: 369 – 385.en_US
dc.identifier.citedreferenceBremer K, Wanntorp H‐E. 1981. A cladistic classification of green plants. Nordic Journal of Botany 1: 1 – 3.en_US
dc.identifier.citedreferenceBrown RC, Lemmon BE. 1984. Spore wall development in Andreaea (Musci: Andreaeopsida). American Journal of Botany 71: 412 – 420.en_US
dc.identifier.citedreferenceBrown RC, Lemmon BE, Carothers ZB. 1982. Spore wall ultrastructure of Sphagnum lescurii Sull. Review of Palaeobotany and Palynology 38: 99 – 107.en_US
dc.identifier.citedreferenceButterfield NJ. 2007. Macroevolution and macroecology through deep time. Palaeontology 50: 41 – 55.en_US
dc.identifier.citedreferenceCampbell DH. 1895. The structure and development of the mosses and ferns (Archegoniatae). London: MacMillan.en_US
dc.identifier.citedreferenceCampbell DH. 1903. Antithetic versus homologous alternation. American Naturalist 37: 153 – 169.en_US
dc.identifier.citedreferenceCampbell DH. 1924. A remarkable development of the sporophyte in Anthoceros fusiformis, Aust. Annals of Botany 37: 473 – 483.en_US
dc.identifier.citedreferenceCampbell NA, Reece JB. 2002. Biology. San Francisco: Benjamin Cummings.en_US
dc.identifier.citedreferenceCarafa A, Duckett JG, Knox JP, Ligrone R. 2005. Distribution of cell‐wall xylans in bryophytes and tracheophytes: New insights into basal interrelationships of land plants. New Phytologist 168: 231 – 240.en_US
dc.identifier.citedreferenceCavalier‐Smith T. 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C‐value paradox. Journal of Cell Science 34: 247 – 278.en_US
dc.identifier.citedreferenceČelakovsky L. 1874. Ueber die verschiedenen Formen und die Bedeutung des Generationwechsels der Pflanzen. Sitzungsberichte der koeniglichen Boehmischen Gesellschaft der Wissenschaften in Prag 2: 21 – 61.en_US
dc.identifier.citedreferenceChamberlain CJ. 1909. Spermatogenesis in Dioon edule. Botanical Gazette 47: 215 – 236.en_US
dc.identifier.citedreferenceChaw SM, Parkinson CL, Cheng YC, Vincent TM, Palmer JD. 2000. Seed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers. Proceedings of the National Academy of Sciences USA 97: 4086 – 4091.en_US
dc.identifier.citedreferenceCoelho SM, Peters AF, Charrier B, Roze D, Destombe C, Valero M, Cock JM. 2007. Complex life cycles of multicellular eukaryotes: New approaches based on the use of model organisms. Gene 406: 152 – 170.en_US
dc.identifier.citedreferenceCooke TJ, Poli D, Cohen JD. 2004. Did auxin play a crucial role in the evolution of novel body plans during the Late Silurian–Early Devonian radiation of land plants? In: Hemsley AR, Poole I eds. The evolution of plant physiology: From whole plants to ecosystems. Amsterdam: Elsevier Academic Press. 85 – 107.en_US
dc.identifier.citedreferenceCornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez‐Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11: 1065 – 1071.en_US
dc.identifier.citedreferenceCox JC, Goffinet B, Wickett NJ, Boles SB, Shaw AJ. 2010. Moss diversity: A molecular phylogenetic analysis of genera. Phytotaxa 9: 175 – 195.en_US
dc.identifier.citedreferenceCrow JF, Kimura M. 1965. Evolution in sexual and asexual populations. American Naturalist 99: 439 – 450.en_US
dc.identifier.citedreferenceCrum H. 2001. Structural diversity of bryophytes. Ann Arbor: The University of Michigan Herbarium.en_US
dc.identifier.citedreferenceCrum HA, Anderson LE. 1981. Mosses of eastern North America. New York: Columbia University Press.en_US
dc.identifier.citedreferenceDangl JL, Jones JD. 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826 – 833.en_US
dc.identifier.citedreferenceDoyle JA. 2012. Phylogenetics and morphological innovations in land plants. In: Ambrose B, Purugganan MD eds. The evolution of plant form. Oxford: Wiley‐Blackwell.en_US
dc.identifier.citedreferenceDoyle JA, Donoghue MJ. 1986. Seed plant phylogeny and the origin of angiosperms—an experimental cladistic approach. Botanical Review 52: 321 – 431.en_US
dc.identifier.citedreferenceDuff RJ, Villarreal JC, Cargill DC, Renzaglia KS. 2007. Progress and challenges toward developing a phylogeny and classification of the hornworts. The Bryologist 110: 214 – 243.en_US
dc.identifier.citedreferenceEdwards D, Duckett JG, Richardson JB. 1995. Hepatic characters in the earliest land plants. Nature 374: 635 – 636.en_US
dc.identifier.citedreferenceEgel R, Penny D. 2007. On the origin of meiosis in eukaryotic evolution: Coevolution of meiosis and mitosis from feeble beginnings. In: Egel R, Lankenau D‐H eds. Recombination and meiosis. Berlin: Springer‐Verlag. 249 – 288.en_US
dc.identifier.citedreferenceFeng S, Jacobsen SE, Reik W. 2010. Epigenetic reprogramming in plant and animal development. Science 330: 622 – 627.en_US
dc.identifier.citedreferenceFinet C, Timme RE, Delwiche CF, Marletaz F. 2010. Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Current Biology 20: 2217 – 2222.en_US
dc.identifier.citedreferenceFloyd GL, Stewart KD, Mattox KR. 1972. Cellular organization, mitosis, and cytokinesis in the ulotrichalean alga, Klebsormidium. Journal of Phycology 8: 176 – 184.en_US
dc.identifier.citedreferenceForrest LL, Davis EC, Long DG, Crandall‐Stotler BJ, Clark A, Hollingsworth ML. 2006. Unraveling the evolutionary history of the liverworts (Marchantiophyta): Multiple taxa, genomes and analyses. The Bryologist 109: 303 – 334.en_US
dc.identifier.citedreferenceFowke LC, Pickett‐Heaps JD. 1969. Cell division in Spirogyra. II. Cytokinesis. Journal of Phycology 5: 273 – 281.en_US
dc.identifier.citedreferenceFrada M, Probert I, Allen MJ, Wilson WH, de Vargas C. 2008. The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proceedings of the National Academy of Sciences USA 105: 15944 – 15949.en_US
dc.identifier.citedreferenceFrey W, Hofmann M, Hilger HH. 2001. The gametophyte–sporophyte junction: Unequivocal hints for two evolutionary lines of archegoniate land plants. Flora 196: 431 – 445.en_US
dc.identifier.citedreferenceFriedman WE. 1995. Organismal duplication, inclusive fitness theory, and altruism: Understanding the evolution of endosperm and the angiosperm reproductive syndrome. Proceedings of the National Academy of Sciences USA 92: 3913 – 3917.en_US
dc.identifier.citedreferenceFriedman WE, Williams JH. 2003. Modularity of the angiosperm female gametophyte and its bearing on the early evolution of endosperm in flowering plants. Evolution 57: 216 – 230.en_US
dc.identifier.citedreferenceGensel PG. 2008. The earliest land plants. Annual Review of Ecology, Evolution, and Systematics 39: 459 – 477.en_US
dc.identifier.citedreferenceGerrienne P, Dilcher DL, Bergamaschi S, Milagres I, Pereira E, Rodrigues MAC. 2006. An exceptional specimen of the early land plant Cooksonia paranensis, and a hypothesis on the life cycle of the earliest eutracheophytes. Review of Palaeobotany and Palynology 142: 123 – 130.en_US
dc.identifier.citedreferenceGerrienne P, Gonez P. 2011. The early evolution of life cycles in embryophytes: A focus on the fossil evidence of gametophyte/sporophyte size and morphological complexity. Journal of Systematics and Evolution 49: 1 – 16.en_US
dc.identifier.citedreferenceGifford EM, Foster AS. 1989. Morphology and evolution of vascular plants. New York: W. H. Freeman.en_US
dc.identifier.citedreferenceGoffinet B, Cox CJ, Shaw AJ, Hedderson TAJ. 2001. The bryophyta (mosses): Systematic and evolutionary inferences from an rps4 gene (cpDNA) phylogeny. Annals of Botany 87: 191 – 208.en_US
dc.identifier.citedreferenceGoremykin VV, Hellwig FH. 2005. Evidence for the most basal split in land plants dividing bryophyte and tracheophyte lineages. Plant Systematics and Evolution 254: 93 – 103.en_US
dc.identifier.citedreferenceGraham LE. 1993. Origin of land plants. New York: John Wiley & Sons.en_US
dc.identifier.citedreferenceGraham LE, Cook ME, Busse JS. 2000. The origin of plants: Body plan changes contributing to a major evolutionary radiation. Proceedings of the National Academy of Sciences USA 97: 4535 – 4540.en_US
dc.identifier.citedreferenceGraham LE, Delwiche CF, Mishler BD. 1991. Phylogenetic connections between the ‘green algae’ and the ‘bryophytes’. Advances in Bryology 4: 213 – 244.en_US
dc.identifier.citedreferenceGraham LE, Wilcox LW. 2000a. Algae. Upper Saddle River: Prentice Hall.en_US
dc.identifier.citedreferenceGraham LKE, Wilcox LW. 2000b. The origin of alternation of generations in land plants: A focus on matrotrophy and hexose transport. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 355: 757 – 767.en_US
dc.identifier.citedreferenceGrant V. 1963. The origin of adaptations. New York: Columbia University Press.en_US
dc.identifier.citedreferenceGray J. 1985. The microfossil record of early land plants: Advances in understanding of early terrestrialization, 1970–1984. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 309: 167 – 195.en_US
dc.identifier.citedreferenceGray J. 1993. Major Paleozoic land plant evolutionary bio‐events. Palaeogeography Palaeoclimatology Palaeoecology 104: 153 – 169.en_US
dc.identifier.citedreferenceGross J, Bhattacharya D. 2010. Uniting sex and eukaryote origins in an emerging oxygenic world. Biology Direct 5: 53.en_US
dc.identifier.citedreferenceGroth‐Malonek M, Pruchner D, Grewe F, Knoop V. 2005. Ancestors of trans‐splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. Molecular Biology and Evolution 22: 117 – 125.en_US
dc.identifier.citedreferenceGuignard ML. 1885. Nouvelles recherches sur le noyau cellulaire. Annales de Sciences Naturelles, Botanique 20: 310 – 372.en_US
dc.identifier.citedreferenceHackett JD, Yoon HS, Li S, Reyes‐Prieto A, Rummele SE, Bhattacharya D. 2007. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with Chromalveolates. Molecular Biology and Evolution 24: 1702 – 1713.en_US
dc.identifier.citedreferenceHaig D. 2010. What do we know about charophyte (Streptophyta) life cycles? Journal of Phycology 46: 860 – 867.en_US
dc.identifier.citedreferenceHaig D, Westoby M. 1989. Parent‐specific gene expression and the triploid endosperm. American Naturalist 134: 147 – 155.en_US
dc.identifier.citedreferenceHe‐Nygren X, Ahonen I, Juslen A, Glenny D, Piippo S. 2004. Phylogeny of liverworts: Beyond a leaf and a thallus. In: Goffinet B, Hollowell V, Magill R eds. Molecular systematics of bryophytes. St. Louis: Missouri Botanical Garden Press. 87 – 118.en_US
dc.identifier.citedreferenceHeath TA, Hedtke SM, Hillis DM. 2008. Taxon sampling and the accuracy of phylogenetic analyses. Journal of Systematics and Evolution 46: 239 – 257.en_US
dc.identifier.citedreferenceHébant C. 1977. The conducting tissues of bryophytes. Vaduz: J. Cramer.en_US
dc.identifier.citedreferenceHeinrichs J, Gradstein SR, Wilson R, Schneider H. 2005. Towards a natural classification of liverworts (Marchantiophyta) based on the chloroplast gene rbcL. Cryptogamie Bryologie 26: 131 – 150.en_US
dc.identifier.citedreferenceHennig W. 1966. Phylogenetic systematics. Urbana: University of Illinois Press.en_US
dc.identifier.citedreferenceHofmeister W. 1851. Vergleichende Untersuchungen der Keimung, Entfaltung und Fruchbildiung hoeherer Kryptogamen (Moose, Farne, Equisetaceen, Rhizocarpeen und Lycopodiaceen) und der Samenbildiung der Coniferen. Lepizig: F. Hofmeister.en_US
dc.identifier.citedreferenceHofmeister W. 1862. On the germination, development, and fructification of the higher Cryptogamia, and on the fructification of the Coniferae. Published for the Ray Society. London: Robert Hardwicke.en_US
dc.identifier.citedreferenceHoudan A, Billard C, Marie D, Not F, Saez AG, Young JR, Probert I. 2004. Holococcolithophore‐heterococcolithophore (Haptophyta) life cycles: Flow cytometric analysis of relative ploidy levels. Systematics and Biodiversity 1: 453 – 465.en_US
dc.identifier.citedreferenceIino Y, Yamamoto M. 1985. Negative control for the initiation of meiosis in Schizosaccharomyces pombe. Proceedings of the National Academy of Sciences USA 82: 2447 – 2451.en_US
dc.identifier.citedreferenceJames TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schussler A, Longcore JE, O'Donnell K, Mozley‐Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann‐Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lucking R, Budel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R. 2006. Reconstructing the early evolution of Fungi using a six‐gene phylogeny. Nature 443: 818 – 822.en_US
dc.identifier.citedreferenceJeffares DC, Phillips MJ, Moore S, Veit B. 2004. A description of the Mei2‐like protein family; structure, phylogenetic distribution and biological context. Development Genes and Evolution 214: 149 – 158.en_US
dc.identifier.citedreferenceJeffrey C. 1967. The origin and differentiation of the archegoniate land plants: A second contribution. Kew Bulletin 21: 335 – 349.en_US
dc.identifier.citedreferenceJeffrey C. 1982. Kingdoms, codes and classification. Kew Bulletin 37: 403 – 416.en_US
dc.identifier.citedreferenceJia Y, Wu P‐C, Wang M‐Z, He S. 2003. Takakiopsida, a unique taxon of bryophytes. Acta Phytotaxonomica Sinica 41: 350 – 361.en_US
dc.identifier.citedreferenceJohri BM, Ambegaokar KB, Srivastava PS. 1992. Comparative embryology of angiosperms. Berlin: Springer‐Verlag.en_US
dc.identifier.citedreferenceJones JD, Dangl JL. 2006. The plant immune system. Nature 444: 323 – 329.en_US
dc.identifier.citedreferenceKarol KG, McCourt RM, Cimino MT, Delwiche CF. 2001. The closest living relatives of land plants. Science 294: 2351 – 2353.en_US
dc.identifier.citedreferenceKato M, Akiyama H. 2005. Interpolation hypothesis for origin of the vegetative sporophyte of land plants. Taxon 54: 443 – 450.en_US
dc.identifier.citedreferenceKaufman AJ, Xiao SH. 2003. High CO 2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature 425: 279 – 282.en_US
dc.identifier.citedreferenceKaur J, Sebastian J, Siddiqi I. 2006. The Arabidopsis ‐ mei2 ‐like genes play a role in meiosis and vegetative growth in Arabidopsis. Plant Cell 18: 545 – 559.en_US
dc.identifier.citedreferenceKawachi M, Inouye I, Honda D, O’Kelly CJ, Bailey JC, Bidigare RR, Andersen RA. 2002. The Pinguiophyceae classis nova, a new class of photosynthetic stramenopiles whose members produce large amounts of omega‐3 fatty acids. Phycological Research 50: 31 – 47.en_US
dc.identifier.citedreferenceKeddy PA. 1981. Why gametophytes and sporophytes are different: Form and function in a terrestrial environment. American Naturalist 118: 452 – 454.en_US
dc.identifier.citedreferenceKeeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW. 2005. The tree of eukaryotes. Trends in Ecology and Evolution 20: 670 – 676.en_US
dc.identifier.citedreferenceKelch DG, Driskell A, Mishler BD. 2004. Inferring phylogeny using genomic characters: A case study using land plant plastomes. In: Goffinet B, Hollowell V, Magill R eds. Molecular systematics of bryophytes. St. Louis: Missouri Botanical Garden Press. 3 – 11.en_US
dc.identifier.citedreferenceKenrick P. 1994. Alternation of generations in land plants: New phylogenetic and palaeobotanical evidence. Biological Reviews 69: 293 – 330.en_US
dc.identifier.citedreferenceKenrick P. 2000. The relationships of vascular plants. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 355: 847 – 855.en_US
dc.identifier.citedreferenceKenrick P, Crane PR. 1997. The origin and early diversification of land plants: A cladistic study. Washington: Smithsonian Institution Press.en_US
dc.identifier.citedreferenceKnoll AH. 2003. Life on a young planet. Princeton: Princeton University Press.en_US
dc.identifier.citedreferenceKnoll AH, Javaux EJ, Hewitt D, Cohen P. 2006. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 361: 1023 – 1038.en_US
dc.identifier.citedreferenceKondrashov AS. 1988. Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435 – 440.en_US
dc.identifier.citedreferenceKondrashov AS. 1997. Evolutionary genetics of life cycles. Annual Review of Ecology and Systematics 28: 391 – 435.en_US
dc.identifier.citedreferenceKondrashov AS, Crow JF. 1991. Haploidy or diploidy: Which is better? Nature 351: 314 – 315.en_US
dc.identifier.citedreferenceKramer KU, Green PS. 1990. Pteridophytes and gymnosperms. Berlin: Springer‐Verlag.en_US
dc.identifier.citedreferenceKreulen DJW. 1972. Spore output of moss capsules in relationship to ontogeny of archesporial tissue. Journal of Bryology 7: 61 – 74.en_US
dc.identifier.citedreferenceLaird CD, McConaughy BL, McCarthy BJ. 1969. Rates of fixation of nucleotide substitutions in evolution. Nature 224: 149 – 154.en_US
dc.identifier.citedreferenceLazarus R, Vercelli D, Palmer LJ, Klimecki WJ, Silverman EK, Richter B, Riva A, Ramoni M, Martinez FD, Weiss ST, Kwiatkowski DJ. 2002. Single nucleotide polymorphisms in innate immunity genes: Abundant variation and potential role in complex human disease. Immunological Reviews 190: 9 – 25.en_US
dc.identifier.citedreferenceLeitch IJ, Soltis DE, Soltis PS, Bennett MD. 2005. Evolution of DNA amounts across land plants (Embryophyta). Annals of Botany 95: 207 – 217.en_US
dc.identifier.citedreferenceLemieux C, Otis C, Turmel M. 2007. A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome‐based phylogenies. BMC Biology 5: 2.en_US
dc.identifier.citedreferenceLewis J, Wolpert L. 1979. Diploidy, evolution and sex. Journal of Theoretical Biology 78: 425 – 438.en_US
dc.identifier.citedreferenceLewis JWM. 1985. Nutrient scarcity as an evolutionary cause of haploidy. American Naturalist 125: 692 – 701.en_US
dc.identifier.citedreferenceLewis LA, McCourt RM. 2004. Green algae and the origin of land plants. American Journal of Botany 91: 1535 – 1556.en_US
dc.identifier.citedreferenceLi W‐H. 1997. Molecular evolution. Sunderland: Sinauer Associates.en_US
dc.identifier.citedreferenceLi W‐H, Yi S, Makova K. 2002. Male‐driven evolution. Current Opinion in Genetics and Development 12: 650 – 656.en_US
dc.identifier.citedreferenceLindeman RL. 1942. The trophic‐dynamic aspect of ecology. Ecology 23: 399 – 417.en_US
dc.identifier.citedreferenceLongton RE, Schuster RM. 1983. Reproductive biology. In: Schuster RM ed. New manual of bryology. Nichinan: The Hattori Botanical Laboratory. 386 – 462.en_US
dc.identifier.citedreferenceLosos JB. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11: 995 – 1007.en_US
dc.identifier.citedreferenceMable BK, Otto SP. 1998. The evolution of life cycles with haploid and diploid phases. Bioessays 20: 453 – 462.en_US
dc.identifier.citedreferenceMacArthur RH, Wilson EO. 1967. The theory of island biogeography. Princeton: Princeton University Press.en_US
dc.identifier.citedreferenceManhart JR, Palmer JD. 1990. The gain of two chloroplast transfer‐RNA introns marks the green algal ancestors of land plants. Nature 345: 268 – 270.en_US
dc.identifier.citedreferenceMarchant HJ, Pickett‐Heaps JD. 1973. Mitosis and cytokinesis in Coleochaete scutata. Journal of Phycology 9: 461 – 471.en_US
dc.identifier.citedreferenceMaynard Smith J, Szathmary E. 1995. The major transitions in evolution. Oxford: Oxford University Press.en_US
dc.identifier.citedreferenceMcManus HA, Qiu Y‐L. 2008. Life cycles in major lineages of photosynthetic eukaryotes, with a special reference to the origin of land plants. Fieldiana 47: 17 – 33.en_US
dc.identifier.citedreferenceMcManus HA, Qiu Y‐L. 2010. On alternations of generations in embryophytic plants. In: Long MY, Gu HY, Zhou ZH eds. Darwin's heritage today: Proceedings of the Darwin 200 Beijing international conference. Beijing: Higher Education Press. 190 – 200.en_US
dc.identifier.citedreferenceMelkonian M. 1989. Flagellar apparatus ultrastructure in Mesostigma viride (Prasinophyceae). Plant Systematics and Evolution 164: 93 – 122.en_US
dc.identifier.citedreferenceMessaoudi I, Guevara Patiño JA, Dyall R, LeMaoult J, Nikolich‐Zugich J. 2002. Direct link between mhc polymorphism, T cell avidity, and diversity in immune defense. Science 298: 1797 – 1800.en_US
dc.identifier.citedreferenceMishler BD, Churchill SP. 1984. A cladistic approach to the phylogeny of the bryophytes. Brittonia 36: 406 – 424.en_US
dc.identifier.citedreferenceMishler BD, Churchill SP. 1985. Transition to a land flora: Phylogenetic relationships of the green algae and bryophytes. Cladistics 1: 305 – 328.en_US
dc.identifier.citedreferenceMiyata T, Hayashida H, Kuma K, Mitsuyasu K, Yasunaga T. 1987. Male‐driven molecular evolution: A model and nucleotide sequence analysis. Cold Spring Harbor Symposia on Quantitative Biology 52: 863 – 867.en_US
dc.identifier.citedreferenceMora CI, Driese SG, Seager PG. 1991. Carbon dioxide in the Paleozoic atmosphere: Evidence from carbon‐isotope compositions of pedogenic carbonate. Geology 19: 1017 – 1020.en_US
dc.identifier.citedreferenceMorgan TH. 1932. The scientific basis of evolution. New York: Norton.en_US
dc.identifier.citedreferenceNei M. 2007. The new mutation theory of phenotypic evolution. Proceedings of the National Academy of Sciences USA 104: 12235 – 12242.en_US
dc.identifier.citedreferenceNishiyama T, Wolf PG, Kugita M, Sinclair RB, Sugita M, Sugiura C, Wakasugi T, Yamada K, Yoshinaga K, Yamaguchi K, Ueda K, Hasebe M. 2004. Chloroplast phylogeny indicates that bryophytes are monophyletic. Molecular Biology and Evolution 21: 1813 – 1819.en_US
dc.identifier.citedreferenceNuismer SL, Otto SP. 2004. Host–parasite interactions and the evolution of ploidy. Proceedings of the National Academy of Sciences USA 101: 11036 – 11039.en_US
dc.identifier.citedreferenceOdum EP. 1969. The strategy of ecosystem development. Science 164: 262 – 270.en_US
dc.identifier.citedreferenceOdum EP, Barrett GW. 2005. Fundamentals of ecology. Belmont: Thomson Brooks/Cole.en_US
dc.identifier.citedreferenceOdum HT. 1988. Self‐organization, transformity, and information. Science 242: 1132 – 1139.en_US
dc.identifier.citedreferenceOhno S. 1970. Evolution by gene duplication. New York: Springer‐Verlag.en_US
dc.identifier.citedreferenceOlmedo‐Monfil V, Duran‐Figueroa N, Arteaga‐Vazquez M, Demesa‐Arevalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle‐Calzada J‐P. 2010. Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464: 628 – 632.en_US
dc.identifier.citedreferenceOrr HA. 1995. Somatic mutation favors the evolution of diploidy. Genetics 139: 1441 – 1447.en_US
dc.identifier.citedreferenceOtto SP, Marks JC. 1996. Mating systems and the evolutionary transition between haploidy and diploidy. Biological Journal of the Linnean Society 57: 197 – 218.en_US
dc.identifier.citedreferenceOverton E. 1893. On the reduction of the chromosomes in the nuclei of plants. Annals of Botany 7: 139 – 143.en_US
dc.identifier.citedreferencePaquin C, Adams J. 1983. Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations. Nature 302: 495 – 500.en_US
dc.identifier.citedreferenceParenti LR. 1980. A phylogenetic analysis of the land plants. Biological Journal of the Linnean Society 13: 225 – 242.en_US
dc.identifier.citedreferenceParfrey LW, Grant J, Tekle YI, Lasek‐Nesselquist E, Morrison HG, Sogin ML, Patterson DJ, Katz LA. 2010. Broadly sampled multigene analyses yield a well‐resolved eukaryotic tree of life. Systematic Biology 59: 518 – 533.en_US
dc.identifier.citedreferenceParkinson BM. 1987. Tapetal organization during sporogenesis in Psilotum nudum. Annals of Botany 60: 353 – 360.en_US
dc.identifier.citedreferencePayne JL, Boyer AG, Brown JH, Finnegan S, Kowalewski M, Krause Jr, RA, Lyons SK, McClain CR, McShea DW, Novack‐Gottshall PM, Smith FA, Stempien JA, Wang SC. 2009. Two‐phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences USA 106: 24 – 27.en_US
dc.identifier.citedreferencePerrot V, Richerd S, Valero M. 1991. Transition from haploidy to diploidy. Nature 351: 315 – 317.en_US
dc.identifier.citedreferencePickett‐Heaps JD. 1967. Ultrastructure and differentiation in Chara sp. II. Mitosis. Australian Journal of Biological Science 20: 883 – 894.en_US
dc.identifier.citedreferencePickett‐Heaps JD. 1972. Cell division in Klebsormidium subtilissimum (formerly Ulothrix subtilissima ), and its possible phylogenetic significance. Cytobios 6: 167 – 183.en_US
dc.identifier.citedreferencePickett‐Heaps JD. 1975. Green algae: Structure, reproduction and evolution in selected genera. Sunderland: Sinauer Associates.en_US
dc.identifier.citedreferencePringsheim N. 1878. Ueber Sprossung der Moosfruechte und den Generationswechel der Thallophyten. Jahrbuecher fuer wissenschaftliche Botanik 11: 1 – 46.en_US
dc.identifier.citedreferenceProskauer J. 1960. Studies on Anthocerotales VI. Phytomorphology 10: 1 – 19.en_US
dc.identifier.citedreferencePryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD. 2001. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409: 618 – 622.en_US
dc.identifier.citedreferenceQiu Y‐L. 2008. Phylogeny and evolution of charophytic algae and land plants. Journal of Systematics and Evolution 46: 287 – 306.en_US
dc.identifier.citedreferenceQiu Y‐L, Cho YR, Cox JC, Palmer JD. 1998. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394: 671 – 674.en_US
dc.identifier.citedreferenceQiu Y‐L, Li L, Wang B, Hendry TA, Li R, Brown JW, Liu Y, Hudson GT, Chen Z. 2010. Angiosperm phylogeny inferred from sequences of four mitochondrial genes. Journal of Systematics and Evolution 48: 391 – 425.en_US
dc.identifier.citedreferenceQiu Y‐L, Li LB, Wang B, Chen ZD, Dombrovska O, Lee J, Kent L, Li RQ, Jobson RW, Hendry TA, Taylor DW, Testa CM, Ambros M. 2007. A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. International Journal of Plant Sciences 168: 691 – 708.en_US
dc.identifier.citedreferenceQiu Y‐L, Li LB, Wang B, Chen ZD, Knoop V, Groth‐Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall‐Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC. 2006. The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences USA 103: 15511 – 15516.en_US
dc.identifier.citedreferenceRaubeson LA, Jansen RK. 1992. Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255: 1697 – 1699.en_US
dc.identifier.citedreferenceRaven PH, Evert RF, Eichhorn SE. 2005. Biology of plants. New York: W. H. Freeman.en_US
dc.identifier.citedreferenceRemy W, Gensel PG, Hass H. 1993. The gametophyte generation of some Early Devonian land plants. International Journal of Plant Sciences 154: 35 – 58.en_US
dc.identifier.citedreferenceRenzaglia KS, Duff RJ, Nickrent DL, Garbary DJ. 2000. Vegetative and reproductive innovations of early land plants: Implications for a unified phylogeny. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 355: 769 – 793.en_US
dc.identifier.citedreferenceRenzaglia KS, McFarland KD, Smith DK. 1997. Anatomy and ultrastructure of the sporophyte of Takakia ceratophylla (Bryophyta). American Journal of Botany 84: 1337 – 1350.en_US
dc.identifier.citedreferenceRodriguez‐Ezpeleta N, Brinkmann H, Roure B, Lartillot N, Lang BF, Philippe H. 2007. Detecting and overcoming systematic errors in genome‐scale phylogenies. Systematic Biology 56: 389 – 399.en_US
dc.identifier.citedreferenceRogers CE, Domozych DS, Stewart KD, Mattox KR. 1981. The flagellar apparatus of Mesostigma viride (Prasinophyceae): Multilayered structures in a scaly green flagellate. Plant Systematics and Evolution 138: 247 – 258.en_US
dc.identifier.citedreferenceRogers CE, Mattox KR, Stewart KD. 1980. The zoospores of Chlorokybus atmophyticus, a charophyte with sarcinoid growth habit. American Journal of Botany 67: 774 – 783.en_US
dc.identifier.citedreferenceSamigullin TK, Yacentyuk SP, Degtyaryeva GV, Valiehoroman KM, Bobrova VK, Capesius I, Martin WM, Troitsky AV, Filin VR, Antonov AS. 2002. Paraphyly of bryophytes and close relationship of hornworts and vascular plants inferred from analysis of chloroplast rDNA ITS (cpITS) sequences. Arctoa 11: 31 – 43.en_US
dc.identifier.citedreferenceSars M. 1837. Beitrag zur Entwicklungsgeschichte der Mollusken und Zoophyten. Archiv fuer Naturgeschichte 3: 402 – 407.en_US
dc.identifier.citedreferenceSars M. 1840. Beitrag zur Entwicklungsgeschichte der Mollusken und Zoophyten. Archiv fuer Naturgeschichte 6: 196 – 219.en_US
dc.identifier.citedreferenceSaunders GW, Hommersand MH. 2004. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. American Journal of Botany 91: 1494 – 1507.en_US
dc.identifier.citedreferenceSchulz C, Little DP, Stevenson DW, Bauer D, Moloney C, Stutzel T. 2010. An overview of the morphology, anatomy, and life cycle of a new model species: The lycophyte Selaginella apoda (L.) Spring. International Journal of Plant Sciences 171: 693 – 712.en_US
dc.identifier.citedreferenceSchuster RM. 1966. The Hepaticae and Anthocerotae of North America, Vol. I. New York: Columbia University Press.en_US
dc.identifier.citedreferenceSchuster RM. 1981. Paleoecology, origin, distribution through time, and evolution of Hepaticae and Anthocerotae. In: Niklas KJ ed. Paleobotany, paleoecology, and evolution. New York: Praeger.en_US
dc.identifier.citedreferenceSchuster RM. 1992a. The Hepaticae and Anthocerotae of North America, Vol. V. Chicago: Field Museum of Natural History.en_US
dc.identifier.citedreferenceSchuster RM. 1992b. The Hepaticae and Anthocerotae of North America, Vol. VI. Chicago: Field Museum of Natural History.en_US
dc.identifier.citedreferenceSchwartzman DW, Volk T. 1989. Biotic enhancement of weathering and the habitability of Earth. Nature 340: 457 – 460.en_US
dc.identifier.citedreferenceSearles RB. 1980. The strategy of the red algal life history. American Naturalist 115: 113 – 120.en_US
dc.identifier.citedreferenceSimpson AGB, Inagaki Y, Roger AJ. 2006. Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of “primitive” eukaryotes. Molecular Biology and Evolution 23: 615 – 625.en_US
dc.identifier.citedreferenceSingh H. 1978. Embryology of gymnosperms. Berlin: Gebrueder Borntraeger.en_US
dc.identifier.citedreferenceSlotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA. 2009. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136: 461 – 472.en_US
dc.identifier.citedreferenceSmith FG. 1907. Morphology of the trunk and development of the microsporangium of cycads. Botanical Gazette 43: 187 – 204.en_US
dc.identifier.citedreferenceSmith GM. 1955. Cryptogamic botany, Vol. I. Bryophytes and pteridophytes. New York: McGraw‐Hill.en_US
dc.identifier.citedreferenceSmith RW. 1900. The structure and development of the sporophylls and sporangia of Isoetes. Botanical Gazette 29: 225 – 258, 323 – 346.en_US
dc.identifier.citedreferenceSmith SA, Donoghue MJ. 2008. Rates of molecular evolution are linked to life history in flowering plants. Science 322: 86 – 89.en_US
dc.identifier.citedreferenceSoltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio‐Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Gitzendanner MA, Sytsma KJ, Qiu Y‐L, Hilu KW, Davis CC, Sanderson MJ, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704 – 730.en_US
dc.identifier.citedreferenceStark LR. 2002. Phenology and its repercussions on the reproductive ecology of mosses. Bryologist 105: 204 – 218.en_US
dc.identifier.citedreferenceStebbins GL, Hill GJC. 1980. Did multicellular plants invade the land? American Naturalist 115: 342 – 353.en_US
dc.identifier.citedreferenceSteemans P, Le Hérissé A, Melvin J, Miller MA, Paris F, Verniers J, Wellman CH. 2009. Origin and radiation of the earliest vascular land plants. Science 324: 353.en_US
dc.identifier.citedreferenceSteenstrup JJS. 1842. Om Forplantning og Udvikling gjennem vexlende Generationsraekker, en saeregen form for Opfostringen ide lavere Dyreklasser. Copenhagen: Bianco Lunos.en_US
dc.identifier.citedreferenceSteenstrup JJS. 1845. On the alternation of generations; or, The propagation and development of animals through alternate generations: A peculiar form of fostering the young in the lower classes of animals. London: The Ray Society.en_US
dc.identifier.citedreferenceStewart KD, Mattox KR. 1975. Comparative cytology, evolution and classification of the green algae with some consideration of the origin of other organisms with chlorophylls a and b. Botanical Review 41: 104 – 135.en_US
dc.identifier.citedreferenceStewart WDP, Rodgers GA. 1977. The cyanophyte–hepatic symbiosis. II. Nitrogen‐fixation and the interchange of the nitrogen and carbon. New Phytologist 78: 459 – 471.en_US
dc.identifier.citedreferenceStewart‐Cox JA, Britton NF, Mogie M. 2004. Endosperm triploidy has a selective advantage during ongoing parental conflict by imprinting. Proceedings of the Royal Society of London Series B: Biological Sciences 271: 1737 – 1743.en_US
dc.identifier.citedreferenceStrasburger E. 1894. The periodic reduction of the number of the chromosomes in the life‐history of living organisms. Annals of Botany 8: 281 – 316.en_US
dc.identifier.citedreferenceStrother PK, Al‐Hajri S, Traverse A. 1996. New evidence for land plants from the lower Middle Ordovician of Saudia Arabia. Geology 24: 55 – 58.en_US
dc.identifier.citedreferenceStrother PK, Wood GD, Taylor WA, Beck JH. 2004. Middle Cambrian cryptospores and the origin of land plants. Memoirs of the Association of Australasian Palaeontologists 29: 99 – 113.en_US
dc.identifier.citedreferenceSvedelius N. 1921. Einige Bemerkungen ueber Generationswechsel und Reduktionsteilung. Berichte der Deutschen Botanischen Gesellschaft 39: 178 – 187.en_US
dc.identifier.citedreferenceSvedelius N. 1927. Alternation of generations in relation to reduction division. Botanical Gazette 83: 362 – 384.en_US
dc.identifier.citedreferenceTakayama S, Isogai A. 2005. Self‐incompatibility in plants. Annual Review of Plant Biology 56: 467 – 489.en_US
dc.identifier.citedreferenceTanahashi T, Sumikawa N, Kato M, Hasebe M. 2005. Diversification of gene function: Homologs of the fioral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens. Development 132: 1727 – 1736.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.