Show simple item record

Spironolactone and colitis: Increased mortality in rodents and in humans

dc.contributor.authorJohnson, Laura A.en_US
dc.contributor.authorGovani, Shail M.en_US
dc.contributor.authorJoyce, Joel C.en_US
dc.contributor.authorWaljee, Akbar K.en_US
dc.contributor.authorGillespie, Brenda W.en_US
dc.contributor.authorHiggins, Peter D.R.en_US
dc.date.accessioned2012-07-12T17:23:35Z
dc.date.available2013-09-03T15:38:27Zen_US
dc.date.issued2012-07en_US
dc.identifier.citationJohnson, Laura A.; Govani, Shail M.; Joyce, Joel C.; Waljee, Akbar K.; Gillespie, Brenda W.; Higgins, Peter D.R. (2012). "Spironolactone and colitis: Increased mortality in rodents and in humans." Inflammatory Bowel Diseases 18(7): 1315-1324. <http://hdl.handle.net/2027.42/92045>en_US
dc.identifier.issn1078-0998en_US
dc.identifier.issn1536-4844en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92045
dc.description.abstractBackground: Crohn's disease causes intestinal inflammation leading to intestinal fibrosis. Spironolactone is an antifibrotic medication commonly used in heart failure to reduce mortality. We examined whether spironolactone is antifibrotic in the context of intestinal inflammation. Methods: In vitro, spironolactone repressed fibrogenesis in transforming growth factor beta (TGF‐β)‐stimulated human colonic myofibroblasts. However, spironolactone therapy significantly increased mortality in two rodent models of inflammation‐induced intestinal fibrosis, suggesting spironolactone could be harmful during intestinal inflammation. Since inflammatory bowel disease (IBD) patients rarely receive spironolactone therapy, we examined whether spironolactone use was associated with mortality in a common cause of inflammatory colitis, Clostridium difficile infection (CDI). Results: Spironolactone use during CDI infection was associated with increased mortality in a retrospective cohort of 4008 inpatients (15.9% vs. 9.1%, n = 390 deaths, P < 0.0001). In patients without liver disease, the adjusted odds ratio (OR) for inpatient mortality associated with 80 mg spironolactone was 1.99 (95% confidence interval [CI]: 1.51–2.63) In contrast to the main effect of spironolactone mortality, multivariate modeling revealed a protective interaction between liver disease and spironolactone dose. The adjusted OR for mortality after CDI was 1.96 (95% CI: 1.50–2.55) for patients without liver disease on spironolactone vs. 1.28 (95% CI: 0.82–2.00) for patients with liver disease on spironolactone when compared to a reference group without liver disease or spironolactone use. Conclusions: We propose that discontinuation of spironolactone in patients without liver disease during CDI could reduce hospital mortality by 2‐fold, potentially reducing mortality from CDI by 35,000 patients annually across Europe and the U.S. (Inflamm Bowel Dis 2011;)en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherCrohn's Diseaseen_US
dc.subject.otherClostridium Difficileen_US
dc.subject.otherColitisen_US
dc.subject.otherMortalityen_US
dc.subject.otherSpironolactoneen_US
dc.titleSpironolactone and colitis: Increased mortality in rodents and in humansen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumAssistant Professor in Gastroenterology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical Center, SPC 5682, Room 6510D, Medical Science Research Building One, 1150 West Medical Center Dr., Ann Arbor, MI 48109‐0682en_US
dc.contributor.affiliationumUniversity of Michigan, Department of Biostatistics, School of Public Health, Ann Arbor, Michiganen_US
dc.contributor.affiliationumUniversity of Michigan, Department of Internal Medicine, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherMedical College of Wisconsin, Department of Dermatology, Milwaukee, Wisconsinen_US
dc.identifier.pmid22081497en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92045/1/21929_ftp.pdf
dc.identifier.doi10.1002/ibd.21929en_US
dc.identifier.sourceInflammatory Bowel Diseasesen_US
dc.identifier.citedreferenceSungaila I, Bartle WR, Walker SE, et al. Spironolactone pharmacokinetics and pharmacodynamics in patients with cirrhotic ascites. Gastroenterology. 1992; 102: 1680 – 1685.en_US
dc.identifier.citedreferenceAndres PG, Friedman LS. Epidemiology and the natural course of inflammatory bowel disease. Gastroenterol Clin North Am. 1999; 28: 255 – 281, vii.en_US
dc.identifier.citedreferenceSands BE, Arsenault JE, Rosen MJ, et al. Risk of early surgery for Crohn's disease: implications for early treatment strategies. Am J Gastroenterol. 2003; 98: 2712 – 2718.en_US
dc.identifier.citedreferenceLouis E, Collard A, Oger AF, et al. Behaviour of Crohn's disease according to the Vienna classification: changing pattern over the course of the disease. Gut. 2001; 49: 777 – 782.en_US
dc.identifier.citedreferencePowell DW, Mifflin RC, Valentich JD, et al. Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am J Physiol. 1999; 277: C183 – 201.en_US
dc.identifier.citedreferenceThannickal VJ, Lee DY, White ES, et al. Myofibroblast differentiation by transforming growth factor‐beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem. 2003; 278: 12384 – 12389.en_US
dc.identifier.citedreferenceHuang EH, Johnson LA, Eaton K, et al. Atorvastatin induces apoptosis in vitro and slows growth of tumor xenografts but not polyp formation in MIN mice. Dig Dis Sci. 2010; 55: 3086 – 3094.en_US
dc.identifier.citedreferenceLivak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) method. Methods. 2001; 25: 402 – 408.en_US
dc.identifier.citedreferenceKim K, Johnson LA, Jia C, et al. Noninvasive ultrasound elasticity imaging (UEI) of Crohn's disease: animal model. Ultrasound Med Biol. 2008; 34: 902 – 912.en_US
dc.identifier.citedreferenceHiggins PD, Johnson LA, Luther J, et al. Prior Helicobacter pylori infection ameliorates Salmonella typhimurium‐induced colitis: mucosal crosstalk between stomach and distal intestine. Inflamm Bowel Dis. 2011; 17: 1398 – 1408.en_US
dc.identifier.citedreferenceKamath PS, Wiesner RH, Malinchoc M, et al. A model to predict survival in patients with end‐stage liver disease. Hepatology. 2001; 33: 464 – 470.en_US
dc.identifier.citedreferenceSemler DE, Chengelis CP, Radzialowski FM. The effects of chronic ingestion of spironolactone on serum thyrotropin and thyroid hormones in the male rat. Toxicol Appl Pharmacol. 1989; 98: 263 – 268.en_US
dc.identifier.citedreferenceCharlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987; 40: 373 – 383.en_US
dc.identifier.citedreferenceDeyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD‐9‐CM administrative databases. J Clin Epidemiol. 1992; 45: 613 – 619.en_US
dc.identifier.citedreferenceOchs HR, Greenblatt DJ, Bodem G, et al. Spironolactone. Am Heart J. 1978; 96: 389 – 400.en_US
dc.identifier.citedreferenceOverdiek HW, Hermens WA, Merkus FW. New insights into the pharmacokinetics of spironolactone. Clin Pharmacol Ther. 1985; 38: 469 – 474.en_US
dc.identifier.citedreferencePatel SM, Stashefsky E, Maroun MC, et al. The impact of angiotensin‐converting enzyme inhibitors and angiotensin‐receptor blockers in patients with Clostridium difficile infection. Med Hypotheses. 2011; 76: 813 – 815.en_US
dc.identifier.citedreferenceCarter GP, Rood JI, Lyras D. The role of toxin A and toxin B in Clostridium difficile‐associated disease: past and present perspectives. Gut Microbes. 2010; 1: 58 – 64.en_US
dc.identifier.citedreferenceLyras D, O'Connor JR, Howarth PM, et al. Toxin B is essential for virulence of Clostridium difficile. Nature. 2009; 458: 1176 – 1179.en_US
dc.identifier.citedreferenceLyerly DM, Saum KE, MacDonald DK, et al. Effects of Clostridium difficile toxins given intragastrically to animals. Infect Immun. 1985; 47: 349 – 352.en_US
dc.identifier.citedreferenceKuehne SA, Cartman ST, Heap JT, et al. The role of toxin A and toxin B in Clostridium difficile infection. Nature. 2010; 467: 711 – 713.en_US
dc.identifier.citedreferenceWitteck A, Yao Y, Fechir M, et al. Rho protein‐mediated changes in the structure of the actin cytoskeleton regulate human inducible NO synthase gene expression. Exp Cell Res. 2003; 287: 106 – 115.en_US
dc.identifier.citedreferenceChun TY, Bloem LJ, Pratt JH. Aldosterone inhibits inducible nitric oxide synthase in neonatal rat cardiomyocytes. Endocrinology. 2003; 144: 1712 – 1717.en_US
dc.identifier.citedreferenceIbrahim MA, Ashour OM, Ibrahim YF, et al. Angiotensin‐converting enzyme inhibition and angiotensin AT(1)‐receptor antagonism equally improve doxorubicin‐induced cardiotoxicity and nephrotoxicity. Pharmacol Res. 2009; 60: 373 – 381.en_US
dc.identifier.citedreferenceFan Q, Liao J, Kobayashi M, et al. Candesartan reduced advanced glycation end‐products accumulation and diminished nitro‐oxidative stress in type 2 diabetic KK/Ta mice. Nephrol Dial Transplant. 2004; 19: 3012 – 3020.en_US
dc.identifier.citedreferenceTian B, Liu J, Bitterman P, et al. Angiotensin II modulates nitric oxide‐induced cardiac fibroblast apoptosis by activation of AKT/PKB. Am J Physiol Heart Circ Physiol. 2003; 285: H1105 – 1112.en_US
dc.identifier.citedreferenceKyne L, Hamel MB, Polavaram R, et al. Health care costs and mortality associated with nosocomial diarrhea due to Clostridium difficile. Clin Infect Dis. 2002; 34: 346 – 353.en_US
dc.identifier.citedreferenceJarvis WR, Schlosser J, Jarvis AA, et al. National point prevalence of Clostridium difficile in US health care facility inpatients, 2008. Am J Infect Control. 2009; 37: 263 – 270.en_US
dc.identifier.citedreferencePitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999; 341: 709 – 717.en_US
dc.identifier.citedreferenceTox U, Steffen HM. Impact of inhibitors of the Renin‐Angiotensin‐aldosterone system on liver fibrosis and portal hypertension. Curr Med Chem. 2006; 13: 3649 – 3661.en_US
dc.identifier.citedreferenceMezzano SA, Ruiz‐Ortega M, Egido J. Angiotensin II and renal fibrosis. Hypertension. 2001; 38: 635 – 638.en_US
dc.identifier.citedreferenceRajagopalan S, Pitt B. Aldosterone as a target in congestive heart failure. Med Clin North Am. 2003; 87: 441 – 457.en_US
dc.identifier.citedreferenceGullulu M, Akdag I, Kahvecioglu S, et al. Aldosterone blockage in proliferative glomerulonephritis prevents not only fibrosis, but proliferation as well. Ren Fail. 2006; 28: 509 – 514.en_US
dc.identifier.citedreferenceErsoy R, Celik A, Yilmaz O, et al. The effects of irbesartan and spironolactone in prevention of peritoneal fibrosis in rats. Perit Dial Int. 2007; 27: 424 – 431.en_US
dc.identifier.citedreferenceNishimura H, Ito Y, Mizuno M, et al. Mineralocorticoid receptor blockade ameliorates peritoneal fibrosis in new rat peritonitis model. Am J Physiol Renal Physiol. 2008; 294: F1084 – 1093.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.