Show simple item record

Microengineered synthetic cellular microenvironment for stem cells

dc.contributor.authorSun, Yubingen_US
dc.contributor.authorWeng, Shinuoen_US
dc.contributor.authorFu, Jianpingen_US
dc.date.accessioned2012-07-12T17:23:46Z
dc.date.available2013-09-03T15:38:27Zen_US
dc.date.issued2012-07en_US
dc.identifier.citationSun, Yubing; Weng, Shinuo; Fu, Jianping (2012). "Microengineered synthetic cellular microenvironment for stem cells." Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 4(4): 414-427. <http://hdl.handle.net/2027.42/92053>en_US
dc.identifier.issn1939-5116en_US
dc.identifier.issn1939-0041en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92053
dc.description.abstractStem cells possess the ability of self‐renewal and differentiation into specific cell types. Therefore, stem cells have great potentials in fundamental biology studies and clinical applications. The most urgent desire for stem cell research is to generate appropriate artificial stem cell culture system, which can mimic the dynamic complexity and precise regulation of the in vivo biochemical and biomechanical signals, to regulate and direct stem cell behaviors. Precise control and regulation of the biochemical and biomechanical stimuli to stem cells have been successfully achieved using emerging micro/nanoengineering techniques. This review provides insights into how these micro/nanoengineering approaches, particularly microcontact printing and elastomeric micropost array, are applied to create dynamic and complex environment for stem cells culture. WIREs Nanomed Nanobiotechnol 2012, 4:414–427. doi: 10.1002/wnan.1175 For further resources related to this article, please visit the WIREs website .en_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.titleMicroengineered synthetic cellular microenvironment for stem cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI, USAen_US
dc.identifier.pmid22639443en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92053/1/1175_ftp.pdf
dc.identifier.doi10.1002/wnan.1175en_US
dc.identifier.sourceWiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnologyen_US
dc.identifier.citedreferenceRottmar M, Håkanson M, Smith M, Maniura‐Weber K. Stem cell plasticity, osteogenic differentiation and the third dimension. J Mater Sci: Mater Med 2010, 21: 999 – 1004.en_US
dc.identifier.citedreferencePeerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, Kumacheva E, Zandstra PW. Niche‐mediated control of human embryonic stem cell self‐renewal and differentiation. EMBO J 2007, 26: 4744 – 4755.en_US
dc.identifier.citedreferenceDischer DE, Janmey P, Wang Y‐L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310: 1139 – 1143.en_US
dc.identifier.citedreferenceEngler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem. Cell 2006, 126: 677 – 689.en_US
dc.identifier.citedreferenceDembo M, Wang Y‐L. Stresses at the cell‐to‐substrate interface during locomotion of fibroblasts. Biophys J 1999, 76: 2307 – 2316.en_US
dc.identifier.citedreferenceLegant WR, Miller JS, Blakely BL, Cohen DM, Genin GM, Chen CS. Measurement of mechanical tractions exerted by cells in three‐dimensional matrices. Nat Methods 2010, 7: 969 – 971.en_US
dc.identifier.citedreferenceWong JY, Leach JB, Brown XQ. Balance of chemistry, topography, and mechanics at the cell‐biomaterial interface: issues and challenges for assessing the role of substrate mechanics on cell response. Surf Sci 2004, 570: 119 – 133.en_US
dc.identifier.citedreferenceTan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc Natl Acad Sci U S A 2003, 100: 1484 – 1489.en_US
dc.identifier.citedreferenceSaez A, Buguin A, Silberzan P, Ladoux B. Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 2005, 89: L52 – L54.en_US
dc.identifier.citedreferencedu Roure O. Force mapping in epithelial cell migration. Proc Natl Acad Sci U S A 2005, 102: 2390 – 2395.en_US
dc.identifier.citedreferenceRabodzey A, Alcaide P, Luscinskas FW, Ladoux B. Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys J 2008, 95: 1428 – 1438.en_US
dc.identifier.citedreferenceLiu Z, Sniadecki N, Chen C. Mechanical forces in endothelial cells during firm adhesion and early transmigration of human monocytes. Cell Mol Bioeng 2010, 3: 50 – 59.en_US
dc.identifier.citedreferenceLiang XM, Han SJ, Reems J‐A, Gao D, Sniadecki NJ. Platelet retraction force measurements using flexible post force sensors. Lab Chip 2010, 10: 991 – 998.en_US
dc.identifier.citedreferenceChowdhury F, Na S, Li D, Poh Y‐C, Tanaka TS, Wang F, Wang N. Material properties of the cell dictate stress‐induced spreading and differentiation in embryonic stem cells. Nat Mater 2010, 9: 82 – 88.en_US
dc.identifier.citedreferenceSaha S, Ji L, De Pablo JJ, Palecek SP. Inhibition of human embryonic stem cell differentiation by mechanical strain. J Cell Physiol 2006, 206: 126 – 137.en_US
dc.identifier.citedreferenceSaha S, Ji L, De Pablo JJ, Palecek SP. TGF β /activin/ nodal pathway in inhibition of human embryonic stem cell differentiation by mechanical strain. Biophys J 2008, 94: 4123 – 4133.en_US
dc.identifier.citedreferenceShimizu N, Yamamoto K, Obi S, Kumagaya S, Masumura T, Shimano Y, Naruse K, Yamashita JK, Igarashi T, Ando J. Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor β. J Appl Physiol 2008, 104: 766 – 772.en_US
dc.identifier.citedreferenceHeidemann SR, Wirtz D. Towards a regional approach to cell mechanics. Trends Cell Biol 2004, 14: 160 – 166.en_US
dc.identifier.citedreferenceGavara N, Roca‐Cusachs P, Sunyer R, Farré R, Navajas D. Mapping cell‐matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton. Biophys J 2008, 95: 464 – 471.en_US
dc.identifier.citedreferenceTrepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ. Universal physical responses to stretch in the living cell. Nature 2007, 447: 592 – 595.en_US
dc.identifier.citedreferenceDaley GQ, Scadden DT. Prospects for stem cell‐based therapy. Cell 2008, 132: 544 – 548.en_US
dc.identifier.citedreferenceMurry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008, 132: 661 – 680.en_US
dc.identifier.citedreferenceThomson JA, Itskovitz‐Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282: 1145 – 1147.en_US
dc.identifier.citedreferenceEbert AD, Svendsen CN. Human stem cells and drug screening: opportunities and challenges. Nat Rev Drug Discov 2010, 9: 367 – 372.en_US
dc.identifier.citedreferenceTakahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126: 663 – 676.en_US
dc.identifier.citedreferenceToh Y‐C, Blagovic K, Voldman J. Advancing stem cell research with microtechnologies: opportunities and challenges. Integr Biol 2010, 2: 305 – 325.en_US
dc.identifier.citedreferenceKeung AJ, Kumar S, Schaffer DV. Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annu Rev Cell Dev Biol 2010, 26: 533 – 556.en_US
dc.identifier.citedreferenceJaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008, 132: 567 – 582.en_US
dc.identifier.citedreferencePera MF, Tam PPL. Extrinsic regulation of pluripotent stem cells. Nature 2010, 465: 713 – 720.en_US
dc.identifier.citedreferenceScadden DT. The stem‐cell niche as an entity of action. Nature 2006, 441: 1075 – 1079.en_US
dc.identifier.citedreferenceJones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 2008, 9: 11 – 21.en_US
dc.identifier.citedreferenceMorrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008, 132: 598 – 611.en_US
dc.identifier.citedreferenceLyssiotis CA, Lairson LL, Boitano AE, Wurdak H, Zhu S, Schultz PG. Chemical control of stem cell fate and developmental potential. Angew Chem Int Ed Engl 2011, 50: 200 – 242.en_US
dc.identifier.citedreferenceMoore KA, Lemischka IR. Stem cells and their niches. Science 2006, 311: 1880 – 1885.en_US
dc.identifier.citedreferenceBlank U, Karlsson G, Karlsson S. Signaling pathways governing stem‐cell fate. Blood 2008, 111: 492 – 503.en_US
dc.identifier.citedreferenceHolst J, Watson S, Lord MS, Eamegdool SS, Bax DV, Nivison‐Smith LB, Kondyurin A, Ma L, Oberhauser AF, Weiss AS, et al. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat Biotechnol 2010, 28: 1123 – 1128.en_US
dc.identifier.citedreferenceWolf CB, Mofrad MRK. Mechanotransduction and its role in stem cell biology. In: Baharvand H, ed. Trends in Stem Cell Biology and Technology. New York, NY: Humana Press; 2009, 389 – 403.en_US
dc.identifier.citedreferenceTitushkin IA, Shin J, Cho M. A new perspective for stem‐cell mechanobiology: biomechanical control of stem‐cell behavior and fate. Crit Rev Biomed Eng 2010, 38: 393 – 433.en_US
dc.identifier.citedreferenceDischer DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science 2009, 324: 1673 – 1677.en_US
dc.identifier.citedreferenceSun Y, Chen CS, Fu J. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys 2012, 41: 23.1 – 23.24.en_US
dc.identifier.citedreferenceDupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, et al. Role of YAP/TAZ in mechanotransduction. Nature 2011, 474: 179 – 183.en_US
dc.identifier.citedreferenceConnelly JT, Gautrot JE, Trappmann B, Tan DWM, Donati G, Huck WTS, Watt FM. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat Cell Biol 2010, 12: 711 – U177.en_US
dc.identifier.citedreferenceChen CS. Mechanotransduction ‐ a field pulling together? J Cell Sci 2008, 121: 3285 – 3292.en_US
dc.identifier.citedreferenceHoffman BD, Grashoff C, Schwartz MA. Dynamic molecular processes mediate cellular mechanotransduction. Nature 2011, 475: 316 – 323.en_US
dc.identifier.citedreferenceWang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 2009, 10: 75 – 82.en_US
dc.identifier.citedreferenceGeiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009, 10: 21 – 33.en_US
dc.identifier.citedreferenceLele TP, Pendse J, Kumar S, Salanga M, Karavitis J, Ingber DE. Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. J Cell Physiol 2006, 207: 187 – 194.en_US
dc.identifier.citedreferenceGalbraith CG, Yamada KM, Sheetz MP. The relationship between force and focal complex development. J Cell Biol 2002, 159: 695 – 705.en_US
dc.identifier.citedreferenceRiveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an Mdia1‐dependent and Rock‐independent mechanism. J Cell Biol 2001, 153: 1175 – 1186.en_US
dc.identifier.citedreferenceBalaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 2001, 3: 466 – 472.en_US
dc.identifier.citedreferenceParsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 2010, 11: 633 – 643.en_US
dc.identifier.citedreferenceLi J, Wang G, Wang C, Zhao Y, Zhang H, Tan Z, Song Z, Ding M, Deng H. MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self‐renewal. Differentiation 2007, 75: 299 – 307.en_US
dc.identifier.citedreferenceSteinberg MS. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 1963, 141: 401 – 408.en_US
dc.identifier.citedreferenceHalbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 2006, 20: 3199 – 3214.en_US
dc.identifier.citedreferenceLiu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS. Mechanical tugging force regulates the size of cell–cell junctions. Proc Natl Acad Sci 2010, 107: 9944 – 9949.en_US
dc.identifier.citedreferenceYonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M. α ‐Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 2010, 12: 533 – 542.en_US
dc.identifier.citedreferenceLi D, Zhou J, Wang L, Shin ME, Su P, Lei X, Kuang H, Guo W, Yang H, Cheng L, et al. Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J Cell Biol 2010, 191: 631 – 644.en_US
dc.identifier.citedreferenceLutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005, 23: 47 – 55.en_US
dc.identifier.citedreferenceKhademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 2006, 103: 2480 – 2487.en_US
dc.identifier.citedreferenceKshitiz, Kim DH, Beebe DJ, Levchenko A. Micro‐ and nanoengineering for stem cell biology: the promise with a caution. Trends Biotechnol 2011, 29: 399 – 408.en_US
dc.identifier.citedreferenceGilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM. Substrate elasticity regulates skeletal muscle stem cell self‐renewal in culture. Science 2010, 329: 1078 – 1081.en_US
dc.identifier.citedreferencePrzybyla LM, Voldman J. Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self‐renewal. Proc Natl Acad Sci 2012, 109: 835 – 840.en_US
dc.identifier.citedreferenceMcBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell 2004, 6: 483 – 495.en_US
dc.identifier.citedreferenceFu JP, Wang YK, Yang MT, Desai RA, Yu XA, Liu ZJ, Chen CS. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 2010, 7: 733 – 736.en_US
dc.identifier.citedreferenceGomez‐Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR. Versatile, fully automated, microfluidic cell culture system. Anal Chem 2007, 79: 8557 – 8563.en_US
dc.identifier.citedreferenceLecault V, Vaninsberghe M, Sekulovic S, Knapp DJ, Wohrer S, Bowden W, Viel F, McLaughlin T, Jarandehei A, Miller M, et al. High‐throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods 2011, 8: 581 – 586.en_US
dc.identifier.citedreferenceKim L, Vahey MD, Lee HY, Voldman J. Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip 2006, 6: 394 – 406.en_US
dc.identifier.citedreferenceDalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CDW, Oreffo ROC. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 2007, 6: 997 – 1003.en_US
dc.identifier.citedreferenceYim EKF, Pang SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 2007, 313: 1820 – 1829.en_US
dc.identifier.citedreferenceOh S, Brammer KS, Li YSJ, Teng D, Engler AJ, Chien S, Jin S. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci 2009, 106: 2130 – 2135.en_US
dc.identifier.citedreferenceMcMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, Murawski K, Kingham E, Oreffo ROC, Dalby MJ. Nanoscale surfaces for the long‐term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 2011, 10: 637 – 644.en_US
dc.identifier.citedreferenceSeck TM, Melchels FP, Feijen J, Grijpma DW. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/ poly(D,L‐lactide)‐based resins. J Control Release 2010, 148: 34 – 41.en_US
dc.identifier.citedreferenceChan V, Zorlutuna P, Jeong JH, Kong H, Bashir R. Three‐dimensional photopatterning of hydrogels using stereolithography for long‐term cell encapsulation. Lab Chip 2010, 10: 2062 – 2070.en_US
dc.identifier.citedreferenceZorlutuna P, Jeong JH, Kong H, Bashir R. Stereolithography‐based hydrogel microenvironments to examine cellular interactions. Adv Funct Mater 2011, 21: 3642 – 3651.en_US
dc.identifier.citedreferenceRuiz SA, Chen CS. Microcontact printing: a tool to pattern. Soft Matter 2007, 3: 168 – 177.en_US
dc.identifier.citedreferenceDesai RA, Khan MK, Gopal SB, Chen CS. Subcellular spatial segregation of integrin subtypes by patterned multicomponent surfaces. Integr Biol 2011, 3: 560 – 567.en_US
dc.identifier.citedreferenceKilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A 2010, 107: 4872 – 4877.en_US
dc.identifier.citedreferenceRuiz SA, Chen CS. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 2008, 26: 2921 – 2927.en_US
dc.identifier.citedreferenceWeng S, Fu J. Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials 2011, 32: 9584 – 9593.en_US
dc.identifier.citedreferenceMann JM, Lam RHW, Weng S, Sun Y, Fu J. A silicone‐based stretchable micropost array membrane for monitoring live‐cell subcellular cytoskeletal response. Lab Chip 2012, 12: 731 – 740.en_US
dc.identifier.citedreferenceSniadecki NJ, Anguelouch A, Yang MT, Lamb CM, Liu Z, Kirschner SB, Liu Y, Reich DH, Chen CS. Magnetic microposts as an approach to apply forces to living cells. Proc Natl Acad Sci U S A 2007, 104: 14553 – 14558.en_US
dc.identifier.citedreferenceHung PJ, Lee PJ, Sabounchi P, Lin R, Lee LP. Continuous perfusion microfluidic cell culture array for high‐throughput cell‐based assays. Biotechnol Bioeng 2005, 89: 1 – 8.en_US
dc.identifier.citedreferenceChung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL. Human neural stem cell growth and differentiation in a gradient‐generating microfluidic device. Lab Chip 2005, 5: 401 – 406.en_US
dc.identifier.citedreferenceFolkman J, Moscona A. Role of cell shape in growth control. Nature 1978, 273: 345 – 349.en_US
dc.identifier.citedreferenceIngber DE, Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factor‐stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 1989, 109: 317 – 330.en_US
dc.identifier.citedreferenceO'Neill C, Jordan P, Riddle P, Ireland G. Narrow linear strips of adhesive substratum are powerful inducers of both growth and total focal contact area. J Cell Sci 1990, 95: 577 – 586.en_US
dc.identifier.citedreferencePrime K, Whitesides G. Self‐assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 1991, 252: 1164 – 1167.en_US
dc.identifier.citedreferenceLopez GP, Albers MW, Schreiber SL, Carroll R, Peralta E, Whitesides GM. Convenient methods for patterning the adhesion of mammalian cells to surfaces using self‐assembled monolayers of alkanethiolates on gold. J Am Chem Soc 1993, 115: 5877 – 5878.en_US
dc.identifier.citedreferenceSinghvi R, Kumar A, Lopez G, Stephanopoulos G, Wang D, Whitesides G, Ingber D. Engineering cell shape and function. Science 1994, 264: 696 – 698.en_US
dc.identifier.citedreferenceSpargo BJ, Testoff MA, Nielsen TB, Stenger DA, Hickman JJ, Rudolph AS. Spatially controlled adhesion, spreading, and differentiation of endothelial cells on self‐assembled molecular monolayers. Proc Natl Acad Sci 1994, 91: 11070 – 11074.en_US
dc.identifier.citedreferenceChen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science 1997, 276: 1425 – 1428.en_US
dc.identifier.citedreferenceHudalla GA, Murphy WL. Using “click” chemistry to prepare sam substrates to study stem cell adhesion. Langmuir 2009, 25: 5737 – 5746.en_US
dc.identifier.citedreferenceTan J, Liu W, Nelson CM, Raghavan S, Chen CS. Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng 2004, 10: 865 – 872.en_US
dc.identifier.citedreferenceBernard A, Delamarche E, Schmid H, Michel B, Bosshard HR, Biebuyck H. Printing patterns of proteins. Langmuir 1998, 14: 2225 – 2229.en_US
dc.identifier.citedreferenceRape AD, Guo WH, Wang YL. The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 2011, 32: 2043 – 2051.en_US
dc.identifier.citedreferenceFeinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK. Muscular thin films for building actuators and powering devices. Science 2007, 317: 1366 – 1370.en_US
dc.identifier.citedreferenceAnderson D, Hinds M. Endothelial cell micropatterning: methods, effects, and applications. Ann Biomed Eng 2011, 39: 2329 – 2345.en_US
dc.identifier.citedreferenceDike L, Chen C, Mrksich M, Tien J, Whitesides G, Ingber D. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell Dev Biol ‐ Animal 1999, 35: 441 – 448.en_US
dc.identifier.citedreferenceThéry M, Racine V, Piel M, Pépin A, Dimitrov A, Chen Y, Sibarita J‐B, Bornens M. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci 2006, 103: 19771 – 19776.en_US
dc.identifier.citedreferenceThéry M, Pépin A, Dressaire E, Chen Y, Bornens M. Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motil Cytoskel 2006, 63: 341 – 355.en_US
dc.identifier.citedreferenceLuo W, Jones SR, Yousaf MN. Geometric control of stem cell differentiation rate on surfaces. Langmuir 2008, 24: 12129 – 12133.en_US
dc.identifier.citedreferenceSong W, Lu HX, Kawazoe N, Chen GP. Adipogenic Differentiation of individual mesenchymal stem cell on different geometric micropatterns. Langmuir 2011, 27: 6155 – 6162.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.