Show simple item record

Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments

dc.contributor.authorNesvizhskii, Alexey I.en_US
dc.date.accessioned2012-07-12T17:23:56Z
dc.date.available2013-07-01T14:33:05Zen_US
dc.date.issued2012-05en_US
dc.identifier.citationNesvizhskii, Alexey I. (2012). "Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments." PROTEOMICS 12(10): 1639-1655. <http://hdl.handle.net/2027.42/92060>en_US
dc.identifier.issn1615-9853en_US
dc.identifier.issn1615-9861en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92060
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherBioinformaticsen_US
dc.subject.otherIntegrative Analysisen_US
dc.subject.otherLabel‐Free Quantificationen_US
dc.subject.otherAP/MSen_US
dc.subject.otherStatistical Modelsen_US
dc.subject.otherProtein Interactionsen_US
dc.titleComputational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experimentsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22611043en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92060/1/pmic7070.pdf
dc.identifier.doi10.1002/pmic.201100537en_US
dc.identifier.sourcePROTEOMICSen_US
dc.identifier.citedreferenceCeol, A., Aryamontri, A. C., Licata, L., Peluso, D., et al., MINT, the molecular interaction database: 2009 update. Nucl. Acids Res. 2010, 38, D532 – D539.en_US
dc.identifier.citedreferenceBoulon, S., Ahmad, Y., Trinkle‐Mulcahy, L., Verheggen, C., et al., Establishment of a protein frequency library and its application in the reliable identification of specific protein interaction partners. Mol. Cell. Proteomics 2010, 9, 861 – 879.en_US
dc.identifier.citedreferenceSardiu, M. E., Florens, L., Washburn, M. P., Evaluation of clustering algorithms for protein complex and protein interaction network assembly. J. Proteome Res. 2009, 8, 2944 – 2952.en_US
dc.identifier.citedreferenceBader, J. S., Chaudhuri, A., Rothberg, J. M., Chant, J., Gaining confidence in high‐throughput protein interaction networks. Nat. Biotechnol. 2004, 22, 78 – 85.en_US
dc.identifier.citedreferenceLee, I., Date, S. V., Adai, A. T., Marcotte, E. M., A probabilistic functional network of yeast genes. Science 2004, 306, 1555 – 1558.en_US
dc.identifier.citedreferenceRhodes, D. R., Tomlins, S. A., Varambally, S., Mahavisno, V., et al., Probabilistic model of the human protein‐protein interaction network. Nat. Biotechnol. 2005, 23, 951 – 959.en_US
dc.identifier.citedreferenceShoemaker, B. A., Panchenko, A. R., Deciphering protein‐protein interactions. Part II. Computational methods to predict protein and domain interaction partners. Plos Comput. Biol. 2007, 3, 595 – 601.en_US
dc.identifier.citedreferenceQiu, J., Noble, W. S., Predicting co‐complexed protein pairs from heterogeneous data. PLoS Comput. Biol. 2008, 4, e1000054.en_US
dc.identifier.citedreferenceMyers, C. L., Troyanskaya, O. G., Context‐sensitive data integration and prediction of biological networks. Bioinformatics 2007, 23, 2322 – 2330.en_US
dc.identifier.citedreferenceBeyer, A., Bandyopadhyay, S., Ideker, T., Integrating physical and genetic maps: from genomes to interaction networks. Nat. Rev. Genet. 2007, 8, 699 – 710.en_US
dc.identifier.citedreferenceJensen, L. J., Kuhn, M., Stark, M., Chaffron, S., et al., STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucl. Acids Res. 2009, 37, D412 – D416.en_US
dc.identifier.citedreferenceWarde‐Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., et al., The G ene MANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucl. Acids Res. 2010, 38, W214 – W220.en_US
dc.identifier.citedreferenceKuhner, S., van Noort, V., Betts, M. J., Leo‐Macias, A., et al., Proteome organization in a genome‐reduced bacterium. Science 2009, 326, 1235 – 1240.en_US
dc.identifier.citedreferenceLu, L. J., Xia, Y., Paccanaro, A., Yu, H. Y., et al., Assessing the limits of genomic data integration for predicting protein networks. Genome Res. 2005, 15, 945 – 953.en_US
dc.identifier.citedreferenceLiu, G., Zhang, J., Larsen, B., Stark, C., et al., P ro H its: integrated software for mass spectrometry‐based interaction proteomics. Nat. Biotech. 2010, 28, 1015 – 1017.en_US
dc.identifier.citedreferenceCline, M. S., Smoot, M., Cerami, E., Kuchinsky, A., et al., Integration of biological networks and gene expression data using C ytoscape. Nat. Protoc. 2007, 2, 2366 – 2382.en_US
dc.identifier.citedreferenceHermjakob, H., Montecchi‐Palazzi, L., Bader, G., Wojcik, J., et al., The HUPO PSI 's M olecular I nteraction format[mdash. a community standard for the representation of protein interaction data. Nat. Biotech. 2004, 22, 177 – 183.en_US
dc.identifier.citedreferenceCarr, S., Aebersold, R., Baldwin, M., Burlingame, A., et al., The need for guidelines in publication of peptide and protein identification data – Working group on publication guidelines for peptide and protein identification data. Mol. Cell. Proteomics 2004, 3, 531 – 533.en_US
dc.identifier.citedreferenceFenyo, D., Beavis, R. C., Informatics development: challenges and solutions for MALDI mass spectrometry. Mass Spectrom. Rev. 2008, 27, 1 – 19.en_US
dc.identifier.citedreferenceMartens, L., Hermjakob, H., Proteomics data validation: why all must provide data. Mol. Biosyst. 2007, 3, 518 – 522.en_US
dc.identifier.citedreferenceStead, D. A., Paton, N., Missier, P., Embury, S. M., et al., Information quality in proteomics. Brief. Bioinform. 2008, 9, 174 – 188.en_US
dc.identifier.citedreferenceVenkatesan, K., Rual, J. F., Vazquez, A., Stelzl, U., et al., An empirical framework for binary interactome mapping. Nat. Methods 2009, 6, 83 – 90.en_US
dc.identifier.citedreferenceChiang, T., Scholtens, D., Sarkar, D., Gentleman, R., et al., Coverage and error models of protein‐protein interaction data by directed graph analysis. Genome Biol. 2007, 8, R186.en_US
dc.identifier.citedreferenceCarr, S., Aebersold, R., Baldwin, M., Burlingame, A., et al., The need for guidelines in publication of peptide and protein identification data: working group on publication guidelines for peptide and protein identification data. Mol. Cell. Proteomics 2004, 3, 531 – 533.en_US
dc.identifier.citedreferenceWilkins, M. R., Appel, R. D., Van Eyk, J. E., Chung, M. C. M., et al., Guidelines for the next 10 years of proteomics. Proteomics 2006, 6, 4 – 8.en_US
dc.identifier.citedreferenceBisson, N., James, D. A., Ivosev, G., Tate, S. A., et al., Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB 2 adaptor. Nat. Biotechnol. 2011, 29, U653 – U138.en_US
dc.identifier.citedreferenceEwing, R. M., Chu, P., Elisma, F., Li, H., et al., Large‐scale mapping of human protein–protein interactions by mass spectrometry. Mol. Syst. Biol. 2007, 3, 89.en_US
dc.identifier.citedreferenceGavin, A. C., Aloy, P., Grandi, P., Krause, R., et al., Proteome survey reveals modularity of the yeast cell machinery. Nature 2006, 440, 631 – 636.en_US
dc.identifier.citedreferenceGavin, A. C., Bosche, M., Krause, R., Grandi, P., et al., Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415, 141 – 147.en_US
dc.identifier.citedreferenceJeronimo, C., Forget, D., Bouchard, A., Li, Q., et al., Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7 SK capping enzyme. Mol. Cell 2007, 27, 262 – 274.en_US
dc.identifier.citedreferenceKrogan, N. J., Cagney, G., Yu, H., Zhong, G., et al., Global landscape of protein complexes in the yeast S accharomyces cerevisiae. Nature 2006, 440, 637 – 643.en_US
dc.identifier.citedreferenceLink, A. J., Eng, J., Schieltz, D. M., Carmack, E., et al., Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 1999, 17, 676 – 682.en_US
dc.identifier.citedreferenceRigaut, G., Shevchenko, A., Rutz, B., Wilm, M., et al., A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 1999, 17, 1030 – 1032.en_US
dc.identifier.citedreferenceRinner, O., Mueller, L. N., Hubalek, M., Muller, M., et al., An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nat. Biotechnol. 2007, 25, 345 – 352.en_US
dc.identifier.citedreferenceHo, Y., Gruhler, A., Heilbut, A., Bader, G. D., et al., Systematic identification of protein complexes in S accharomyces cerevisiae by mass spectrometry. Nature 2002, 415, 180 – 183.en_US
dc.identifier.citedreferenceBauer, A., Kuster, B., Affinity purification‐mass spectrometry: powerful tools for the characterization of protein complexes. Eur. J. Biochem. 2003, 270, 570 – 578.en_US
dc.identifier.citedreferenceFigeys, D., Mapping the human protein interactome. Cell Res. 2008, 18, 716 – 724.en_US
dc.identifier.citedreferenceGingras, A. C., Gstaiger, M., Raught, B., Aebersold, R., Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol. 2007, 8, 645 – 654.en_US
dc.identifier.citedreferenceWu, C. C., MacCoss, M. J., Shotgun proteomics: tools for the analysis of complex biological systems. Curr. Op. Mol. Therap. 2002, 4, 242 – 250.en_US
dc.identifier.citedreferenceKislinger, T., Emili, A., Multidimensional protein identification technology: current status and future prospects. Exp. Rev. Proteomics 2005, 2, 27 – 39.en_US
dc.identifier.citedreferenceNesvizhskii, A. I., Vitek, O., Aebersold, R., Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods 2007, 4, 787 – 797.en_US
dc.identifier.citedreferenceSadygov, R. G., Cociorva, D., Yates, J. R., 3rd, Large‐scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat. Methods 2004, 1, 195 – 202.en_US
dc.identifier.citedreferenceNesvizhskii, A. I., A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J. Proteomics 2010, 73, 2092 – 2123.en_US
dc.identifier.citedreferenceChen, G. I., Gingras, A.‐C., Affinity‐purification mass spectrometry ( AP ‐ MS ) of serine/threonine phosphatases. Methods 2007, 42, 298 – 305.en_US
dc.identifier.citedreferenceTrinkle‐Mulcahy, L., Boulon, S., Lam, Y. W., Urcia, R., et al., Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J. Biol. Chem. 2008, 183, 223 – 239.en_US
dc.identifier.citedreferenceBlagoev, B., Kratchmarova, I., Ong, S. E., Nielsen, M., et al., A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nat. Biotechnol. 2003, 21, 315 – 318.en_US
dc.identifier.citedreferenceKim, B., Nesvizhskii, A. I., Rani, P. G., Hahn, S., et al., The transcription elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes. Proc. Natl. Acad. Sci. USA 2007, 104, 16068 – 16073.en_US
dc.identifier.citedreferenceRanish, J. A., Yi, E. C., Leslie, D. M., Purvine, S. O., et al., The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 2003, 33, 349 – 355.en_US
dc.identifier.citedreferenceTackett, A. J., DeGrasse, J. A., Sekedat, M. D., Oeffinger, M., et al., I ‐ DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J. Proteome Res. 2005, 4, 1752 – 1756.en_US
dc.identifier.citedreferenceVermeulen, M., Hubner, N. C., Mann, M., High confidence determination of specific protein–protein interactions using quantitative mass spectrometry. Curr. Op. Biotechnol. 2008, 19, 331 – 337.en_US
dc.identifier.citedreferenceMargolin, A. A., Ong, S.‐E., Schenone, M., Gould, R., et al., Empirical B ayes analysis of quantitative proteomics experiments. PLoS ONE 2009, 4, e7454.en_US
dc.identifier.citedreferenceAebersold, R., Mann, M., Mass spectrometry‐based proteomics. Nature 2003, 422, 198 – 207.en_US
dc.identifier.citedreferenceIto, T., Chiba, T., Ozawa, R., Yoshida, M., et al., A comprehensive two‐hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 2001, 98, 4569 – 4574.en_US
dc.identifier.citedreferenceSteen, H., Mann, M., The ABC 's (and XYZ 's) of peptide sequencing. Nat. Rev. Mol. Cell Biol. 2004, 5, 699 – 711.en_US
dc.identifier.citedreferenceUetz, P., Giot, L., Cagney, G., Mansfield, T. A., et al., A comprehensive analysis of protein–protein interactions in S accharomyces cerevisiae. Nature 2000, 403, 623 – 627.en_US
dc.identifier.citedreferenceSkarra, D. V., Goudreault, M., Choi, H., Mullin, M., et al., Label‐free quantitative proteomics and SAINT analysis enable interactome mapping for the human S er/ T hr protein phosphatase 5. Proteomics 2011, 11, 1508 – 1516.en_US
dc.identifier.citedreferenceBader, J. S., Chaudhuri, A., Rothberg, J. M., Chant, J., Gaining confidence in high‐throughput protein interaction networks. Nat. Biotechnol. 2004, 22, 78 – 85.en_US
dc.identifier.citedreferenceCloutier, P., Al‐Khoury, R., Lavallee‐Adam, M., Faubert, D., et al., High‐resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II‐associated complexes. Methods 2009, 48, 381 – 386.en_US
dc.identifier.citedreferenceDeane, C. M., Salwinski, L., Xenarios, I., Eisenberg, D., Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell Proteomics 2002, 1, 349 – 356.en_US
dc.identifier.citedreferenceDeng, M., Sun, F., Chen, T., Assessment of the reliability of protein‐protein interactions and protein function prediction. Pac. Symp. Biocomput. 2003, 8, 140 – 151.en_US
dc.identifier.citedreferenceQi, Y., Klein‐Seetharaman, J., Bar‐Joseph, Z., Random forest similarity for protein‐protein interaction prediction from multiple sources. Pac. Symp. Biocomput. 2005, 10, 531 – 542.en_US
dc.identifier.citedreferenceSharan, R., Suthram, S., Kelley, R. M., Kuhn, T., et al., Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA 2005, 102, 1974 – 1979.en_US
dc.identifier.citedreferenceBader, G. D., Hogue, C. W., Analyzing yeast protein‐protein interaction data obtained from different sources. Nat. Biotechnol. 2002, 20, 991 – 997.en_US
dc.identifier.citedreferenceCollins, S. R., Kemmeren, P., Zhao, X. C., Greenblatt, J. F., et al., Toward a comprehensive atlas of the physical interactome of S accharomyces cerevisiae. Mol. Cell Proteomics 2007, 6, 439 – 450.en_US
dc.identifier.citedreferenceHart, G. T., Lee, I., Marcotte, E. R., A high‐accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics 2007, 8, 236.en_US
dc.identifier.citedreferenceScholtens, D., Gentleman, R., Making sense of high‐throughput protein‐protein interaction data. Stat. Appl. Genet. Mol. Biol. 2004, 3, Article39.en_US
dc.identifier.citedreferenceSharp, J. L., Anderson, K. K., Hurst, G. B., Daly, D. S., et al., Statistically inferring protein‐protein associations with affinity isolation LC ‐ MS / MS assays. J. Proteome Res. 2007, 6, 3788 – 3795.en_US
dc.identifier.citedreferenceZhang, B., Park, B. H., Karpinets, T., Samatova, N. F., From pull‐down data to protein interaction networks and complexes with biological relevance. Bioinformatics 2008, 24, 979 – 986.en_US
dc.identifier.citedreferenceGingras, A. C., Caballero, M., Zarske, M., Sanchez, A., et al., A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity. Mol. Cell. Proteomics 2005, 4, 1725 – 1740.en_US
dc.identifier.citedreferenceGlatter, T., Wepf, A., Aebersold, R., Gstaiger, M., An integrated workflow for charting the human interaction proteome: insights into the PP 2 A system. Mol. Syst. Biol. 2009, 5, 237.en_US
dc.identifier.citedreferenceSardiu, M. E., Cai, Y., Jin, J., Swanson, S. K., et al., Probabilistic assembly of human protein interaction networks from label‐free quantitative proteomics. Proc. Natl. Acad. Sci. USA 2008, 105, 1454 – 1459.en_US
dc.identifier.citedreferenceSowa, M. E., Bennett, E. J., Gygi, S. P., Harper, J. W., Defining the human deubiquitinating enzyme interaction landscape. Cell 2009, 138, 389 – 403.en_US
dc.identifier.citedreferenceGlatter, T., Schittenhelm, R. B., Rinner, O., Roguska, K., et al., Modularity and hormone sensitivity of the D rosophila melanogaster insulin receptor/target of rapamycin interaction proteome. Mol. Syst. Biol. 2011, 7, 547.en_US
dc.identifier.citedreferenceZhang, B., VerBerkmoes, N. C., Langston, M. A., Uberbacher, E., et al., Detecting differential and correlated protein expression in label‐free shotgun proteomics. J. Proteome Res. 2006, 5, 2909 – 2918.en_US
dc.identifier.citedreferenceJaffe, J. D., Mani, D. R., Leptos, K. C., Church, G. M., et al., PEPP e R, a platform for experimental proteomic pattern recognition. Mol. Cell. Proteomics 2006, 5, 1927 – 1941.en_US
dc.identifier.citedreferenceLi, X. J., Yi, E. C., Kemp, C. J., Zhang, H., et al., A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography‐mass spectrometry. Mol. Cell. Proteomics 2005, 4, 1328 – 1340.en_US
dc.identifier.citedreferenceSilva, J. C., Gorenstein, M. V., Li, G. Z., Vissers, J. P., et al., Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol. Cell. Proteomics 2006, 5, 144 – 156.en_US
dc.identifier.citedreferenceTrudgian, D. C., Ridlova, G., Fischer, R., Mackeen, M. M., et al., Comparative evaluation of label‐free SINQ normalized spectral index quantitation in the central proteomics facilities pipeline. Proteomics 2011, 11, 2790 – 2797.en_US
dc.identifier.citedreferenceAsara, J. M., Christofk, H. R., Freimark, L. M., Cantley, L. C., A label‐free quantification method by MS / MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics 2008, 8, 994 – 999.en_US
dc.identifier.citedreferenceLange, V., Picotti, P., Domon, B., Aebersold, R., Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 2008, 4, 422.en_US
dc.identifier.citedreferenceChoi, H., Fermin, D., Nesvizhskii, A. I., Significance analysis of spectral count data in label‐free shotgun proteomics. Mol. Cell. Proteomics 2008, 7, 2373 – 2385.en_US
dc.identifier.citedreferenceGramolini, A. O., Kislinger, T., Alikhani‐Koopaei, R., Fong, V., et al., Comparative proteomics profiling of a phospholamban mutant mouse model of dilated cardiomyopathy reveals progressive intracellular stress responses. Mol. Cell. Proteomics 2008, 7, 519 – 533.en_US
dc.identifier.citedreferenceFu, X., Gharib, S. A., Green, P. S., Aitken, M. L., et al., Spectral index for assessment of differential protein expression in shotgun proteomics. J. Proteome Res. 2008, 7, 845 – 854.en_US
dc.identifier.citedreferenceLu, P., Vogel, C., Wang, R., Yao, X., et al., Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 2007, 25, 117 – 124.en_US
dc.identifier.citedreferenceXia, Q. W., Wang, T. S., Park, Y., Lamont, R. J., et al., Differential quantitative proteomics of P orphyromonas gingivalis by linear ion trap mass spectrometry: non‐label methods comparison, q‐values and LOWESS curve fitting. Int. J. Mass Spectrom. 2007, 259, 105 – 116.en_US
dc.identifier.citedreferenceBlondeau, F., Ritter, B., Allaire, P. D., Wasiak, S., et al., Tandem MS analysis of brain clathrin‐coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc. Natl. Acad. Sci. USA 2004, 101, 3833 – 3838.en_US
dc.identifier.citedreferenceIshihama, Y., Oda, Y., Tabata, T., Sato, T., et al., Exponentially modified P rotein A bundance I ndex (em PAI ) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics 2005, 4, 1265 – 1272.en_US
dc.identifier.citedreferenceMcAfee, K. J., Duncan, D. T., Assink, M., Link, A. J., Analyzing proteomes and protein function using graphical comparative analysis of tandem mass spectrometry results. Mol. Cell. Proteomics 2006, 5, 1497 – 1513.en_US
dc.identifier.citedreferenceOld, W. M., Meyer‐Arendt, K., Aveline‐Wolf, L., Pierce, K. G., et al., Comparison of label‐free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 2005, 4, 1487 – 1502.en_US
dc.identifier.citedreferenceZybailov, B., Coleman, M. K., Florens, L., Washburn, M. P., Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal. Chem. 2005, 77, 6218 – 6224.en_US
dc.identifier.citedreferenceUsaite, R., Wohlschlegel, J., Venable, J. D., Park, S. K., et al., Characterization of global yeast quantitative proteome data generated from the wild‐type and glucose repression S accharomyces cerevisiae strains: the comparison of two quantitative methods. J. Proteome Res. 2008, 7, 266 – 275.en_US
dc.identifier.citedreferenceStates, D. J., Omenn, G. S., Blackwell, T. W., Fermin, D., et al., Challenges in deriving high‐confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat. Biotechnol. 2006, 24, 333 – 338.en_US
dc.identifier.citedreferenceTang, H. X., Arnold, R. J., Alves, P., Xun, Z. Y., et al., 14th Conference on Intelligent Systems for Molecular Biology, Fortaleza, BRAZIL 2006, pp. E481 – E488.en_US
dc.identifier.citedreferenceCai, L., Huang, H. Y., Blackshaw, S., Liu, J. S., et al., Clustering analysis of SAGE data using a P oisson approach. Genome Biol. 2004, 5, R51.en_US
dc.identifier.citedreferenceWang, J. P. Z., Lindsay, B. G., Cui, L. Y., Wall, P. K., et al., Gene capture prediction and overlap estimation in EST sequencing from one or multiple libraries. BMC Bioinformatics 2005, 6, 300.en_US
dc.identifier.citedreferenceWold, B., Myers, R. M., Sequence census methods for functional genomics. Nat. Methods 2008, 5, 19 – 21.en_US
dc.identifier.citedreferenceOld, W. M., Meyer‐Arendt, K., Aveline‐Wolf, L., Pierce, K. G., et al., Comparison of label‐free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 2005, 4, 1487 – 1502.en_US
dc.identifier.citedreferencePaoletti, A. C., Parmely, T. J., Tomomori‐Sato, C., Sato, S., et al., Quantitative proteomic analysis of distinct mammalian mediator complexes using normalized spectral abundance factors. P.N.A.S. 2006, 103, 18928 – 18933.en_US
dc.identifier.citedreferenceWong, J. W. H., Sullivan, M. J., Cagney, G., Computational methods for the comparative quantification of proteins in label‐free LC n‐ MS experiments. Brief. Bioinform. 2008, 9, 156 – 165.en_US
dc.identifier.citedreferenceIsserlin, R., Emili, A., Interpretation of large‐scale quantitative shotgun proteomic profiles for biomarker discovery. Curr. Opin. Mol. Ther. 2008, 10, 231 – 242.en_US
dc.identifier.citedreferenceFermin, D., Basrur, V., Yocum, A. K., Nesvizhskii, A. I., Abacus: a computational tool for extracting and pre‐processing spectral count data for label‐free quantitative proteomic analysis. Proteomics 2011, 11, 1340 – 1345.en_US
dc.identifier.citedreferenceDeutsch, E. W., Mendoza, L., Shteynberg, D., Farrah, T., et al., A guided tour of the Trans‐Proteomic Pipeline. Proteomics 2010, 10, 1150 – 1159.en_US
dc.identifier.citedreferenceMay, D., Fitzgibbon, M., Liu, Y., Holzman, T., et al., A platform for accurate mass and time analyses of mass spectrometry data. J. Proteome Res. 2007, 6, 2685 – 2694.en_US
dc.identifier.citedreferenceMueller, L. N., Rinner, O., Schmidt, A., Letarte, S., et al., SuperHirn –a novel tool for high resolution LC ‐ MS ‐based peptide/protein profiling. Proteomics 2007, 7, 3470 – 3480.en_US
dc.identifier.citedreferenceTsou, C. C., Tsai, C. F., Tsui, Y. H., Sudhir, P. R., et al., IDEAL ‐ Q, an automated tool for label‐free quantitation analysis using an efficient peptide alignment approach and spectral data validation. Mol. Cell. Proteomics 2010, 9, 131 – 144.en_US
dc.identifier.citedreferenceCox, J., Mann, M., M ax Q uant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification. Nat. Biotechnol. 2008, 26, 1367 – 1372.en_US
dc.identifier.citedreferenceRappsilber, J., Mann, M., What does it mean to identify a protein in proteomics? Trends Biochem. Sci. 2002, 27, 74 – 78.en_US
dc.identifier.citedreferenceNesvizhskii, A. I., Aebersold, R., Interpretation of shotgun proteomic data – The protein inference problem. Mol. Cell. Proteomics 2005, 4, 1419 – 1440.en_US
dc.identifier.citedreferenceSilva, J. C., Gorenstein, M. V., Li, G. Z., Vissers, J. P. C., et al., Absolute quantification of proteins by LCMSE – A virtue of parallel MS acquisition. Mol. Cell. Proteomics 2006, 5, 144 – 156.en_US
dc.identifier.citedreferenceNagaraj, N., Wisniewski, J. R., Geiger, T., Cox, J., et al., Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 2011, 7, 548.en_US
dc.identifier.citedreferenceSchwanhausser, B., Busse, D., Li, N., Dittmar, G., et al., Global quantification of mammalian gene expression control. Nature 2011, 473, 337 – 342.en_US
dc.identifier.citedreferenceZhang, Y., Wen, Z., Washburn, M. P., Florens, L., Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal. Chem. 2010, 82, 2272 – 2281.en_US
dc.identifier.citedreferenceChoi, H., Kim, S., Gingras, A. C., Nesvizhskii, A. I., Analysis of protein complexes through model‐based biclustering of label‐free quantitative AP ‐ MS data. Mol. Syst. Biol. 2010, 6, 385.en_US
dc.identifier.citedreferenceHo, L., Ronan, J. L., Wu, J., Staahl, B. T., et al., An embryonic stem cell chromatin remodeling complex, es BAF, is essential for embryonic stem cell self‐renewal and pluripotency. Proc. Natl. Acad. Sci. USA 2009, 106, 5181 – 5186.en_US
dc.identifier.citedreferenceFernandez, E., Collins, M. O., Uren, R. T., Kopanitsa, M. V., et al., Targeted tandem affinity purification of PSD ‐95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins. Mol. Syst. Biol. 2009, 5, 269.en_US
dc.identifier.citedreferenceHubner, N. C., Bird, A. W., Cox, J., Splettstoesser, B., et al., Quantitative proteomics combined with BAC T ransgene O mics reveals in vivo protein interactions. J. Cell Biol. 2010, 189, 739 – 754.en_US
dc.identifier.citedreferenceCui, X., Churchill, G., Statistical tests for differential expression in c DNA microarray experiments. Genome Biol. 2003, 4, 210.en_US
dc.identifier.citedreferenceHubner, N. C., Mann, M., Extracting gene function from protein‐protein interactions using Q uantitative BAC I ntera C tomics ( QUBIC ). Methods 2011, 53, 453 – 459.en_US
dc.identifier.citedreferenceMalovannaya, A., Lanz, R. B., Jung, S. Y., Bulynko, Y., et al., Analysis of the human endogenous coregulator complexome. Cell 2011, 145, 787 – 799.en_US
dc.identifier.citedreferenceMosley, A. L., Sardiu, M. E., Pattenden, S. G., Workman, J. L., et al., Highly reproducible label free quantitative proteomic analysis of RNA polymerase complexes. Mol. Cel. Proteomics 2011, 10, M110.000687.en_US
dc.identifier.citedreferenceSardiu, M. E., Gilmore, J. M., Carrozza, M. J., Li, B., et al., Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics. PLoS ONE 2009, 4.en_US
dc.identifier.citedreferenceBreitkreutz, A., Choi, H., Sharom, J., Boucher, L., et al., Global architecture of the yeast protein kinase and phosphatase interaction network. Science 2010, 328, 1043 – 1046.en_US
dc.identifier.citedreferenceChoi, H., Larsen, B., Lin, Z. Y., Breitkreutz, A., et al., SAINT: probabilistic scoring of affinity purification‐mass spectrometry data. Nat. Methods 2011, 8, U 70 – U100.en_US
dc.identifier.citedreferenceBreitkreutz, A., Choi, H., Sharom, J. R., Boucher, L., et al., A global protein kinase and phosphatase interaction network in yeast. Science 2010, 328, 1043 – 1046.en_US
dc.identifier.citedreferenceChoi, H., Glatter, T., Gstaiger, M., Nesvizhskii, A.I., SAINT ‐ MS 1: protein‐protein interaction scoring using label‐free intensity data in affinity purification – mass spectrometry experiments. J. Proteome Res. 2012, in press.en_US
dc.identifier.citedreferenceBehrends, C., Sowa, M. E., Gygi, S. P., Harper, J. W., Network organization of the human autophagy system. Nature 2010, 466, U 68 – U84.en_US
dc.identifier.citedreferenceLavallee‐Adam, M., Cloutier, P., Coulombe, B., Blanchette, M., Modeling contaminants in AP ‐ MS / MS experiments. J. Proteome Res. 2011, 10, 886 – 895.en_US
dc.identifier.citedreferenceSaha, S., Kaur, P., Ewing, R. M., The bait compatibility index: computational bait selection for interaction proteomics experiments. J. Proteome Res. 2010, 9, 4972 – 4981.en_US
dc.identifier.citedreferencePagel, P., Kovac, S., Oesterheld, M., Brauner, B., et al., The MIPS mammalian protein‐protein interaction database. Bioinformatics 2005, 21, 832 – 834.en_US
dc.identifier.citedreferenceBreitkreutz, B. J., Stark, C., Reguly, T., Boucher, L., et al., The B io GRID interaction database: 2008 update. Nucl. Acids Res. 2008, 36, D637 – D640.en_US
dc.identifier.citedreferencePeri, S., Navarro, J. D., Amanchy, R., Kristiansen, T. Z., et al., Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 2003, 13, 2363 – 2371.en_US
dc.identifier.citedreferenceKerrien, S., Alam‐Faruque, Y., Aranda, B., Bancarz, I., et al., IntAct – open source resource for molecular interaction data. Nucl. Acids Res. 2007, 35, D561 – D565.en_US
dc.identifier.citedreferenceSalwinski, L., Miller, C. S., Smith, A. J., Pettit, F. K., et al., The database of interacting proteins: 2004 update. Nucl. Acids Res. 2004, 32, D449 – D451.en_US
dc.identifier.citedreferenceMalovannaya, A., Li, Y. H., Bulynko, Y., Jung, S. Y., et al., Streamlined analysis schema for high‐throughput identification of endogenous protein complexes. Proc. Natl. Acad. Sci. USA 2010, 107, 2431 – 2436.en_US
dc.identifier.citedreferenceAranda, B., Blankenburg, H., Kerrien, S., Brinkman, F. S. L., et al., PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat. Methods 2011, 8, 528 – 529.en_US
dc.identifier.citedreferenceCusick, M. E., Yu, H. Y., Smolyar, A., Venkatesan, K., et al., Literature‐curated protein interaction datasets. Nat. Methods 2009, 6, 39 – 46.en_US
dc.identifier.citedreferenceBraun, P., Tasan, M., Dreze, M., Barrios‐Rodiles, M., et al., An experimentally derived confidence score for binary protein‐protein interactions. Nat. Methods 2009, 6, 91 – 98.en_US
dc.identifier.citedreferenceChen, G. I., Gingras, A. ‐C., Affinity‐purification mass spectrometry ( AP ‐ MS ) of serine/threonine phosphatases. Methods 2007, 42, 298 – 305.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.