Show simple item record

Developmental and genetic components explain enhanced pulmonary volumes of female peruvian quechua

dc.contributor.authorKiyamu, Melisaen_US
dc.contributor.authorBigham, Abigailen_US
dc.contributor.authorParra, Estebanen_US
dc.contributor.authorLeón‐velarde, Fabiolaen_US
dc.contributor.authorRivera‐chira, Maríaen_US
dc.contributor.authorBrutsaert, Tom D.en_US
dc.date.accessioned2012-07-12T17:24:36Z
dc.date.available2013-10-01T17:06:31Zen_US
dc.date.issued2012-08en_US
dc.identifier.citationKiyamu, Melisa; Bigham, Abigail; Parra, Esteban; León‐velarde, Fabiola ; Rivera‐chira, María ; Brutsaert, Tom D. (2012). "Developmental and genetic components explain enhanced pulmonary volumes of female peruvian quechua ." American Journal of Physical Anthropology 148(4): 534-542. <http://hdl.handle.net/2027.42/92086>en_US
dc.identifier.issn0002-9483en_US
dc.identifier.issn1096-8644en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92086
dc.description.abstractHigh altitude natives have enlarged vital capacities and residual volumes (RV). Because pulmonary volumes are an indication of functionally relevant traits, such as diffusion capacity, the understanding of the factors (genetic/developmental) that influence lung volumes provides insight into the adaptive responses of highlanders. In order to test for the effect of growth and development at high altitude on lung volumes, we obtained forced vital capacities (FVC), RV, and total lung capacities (TLC) for a sample of 65 Peruvian females of mostly Quechua origins (18–34 years) who were sub‐divided into two well‐matched groups: 1) sea‐level born and raised females (BSL, n = 34) from Lima, Peru (150 m), and 2) high‐altitude born and raised females (BHA, n = 31) from Cerro de Pasco, Peru (4,338 m). To determine Quechua origins, Native American ancestry proportion (NAAP) for each individual was assessed using a panel of 70 ancestry informative markers. NAAP was similar between groups (BSL = 91.71%; BHA = 89.93%; P = 0.240), and the analysis confirmed predominantly Quechua origins. After adjusting for body size and NAAP, BHA females had significantly higher FVC (3.79 ± 0.06 l; P < 0.001), RV (0.98 ± 0.03 l; P < 0.001) and TLC (4.80 ± 0.07 l; P < 0.001) compared to BSL females (FVC = 3.33 ± 0.05 l; RV = 0.69 ± 0.03 l; TLC = 4.02 ± 0.06 l). NAAP was not associated with FVC ( P = 0.352) or TLC ( P = 0.506). However, NAAP was positively associated with RV ( P = 0.004). In summary, results indicate that developmental exposure to high altitude in females constitutes an important factor for all lung volumes, whereas both genetic and developmental factors seem to be important for RV. Am J Phys Anthropol 2012. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherAdaptationen_US
dc.subject.otherHypoxiaen_US
dc.subject.otherGeneticsen_US
dc.subject.otherDevelopmenten_US
dc.titleDevelopmental and genetic components explain enhanced pulmonary volumes of female peruvian quechuaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAnthropologyen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Anthropology, University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationotherDepartment of Anthropology, 1400 Washington Ave, The University at Albany, SUNY, Albany, New York 12222, USAen_US
dc.contributor.affiliationotherDepartment of Exercise Science, Syracuse University, Syracuse, NY 13210en_US
dc.contributor.affiliationotherDepartamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Peruen_US
dc.contributor.affiliationotherDepartment of Anthropology, University of Toronto at Mississauga, Toronto, Canada L5L 1C6en_US
dc.contributor.affiliationotherDepartment of Anthropology, University at Albany, SUNY, Albany, NY 12222en_US
dc.identifier.pmid22552823en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92086/1/22069_ftp.pdf
dc.identifier.doi10.1002/ajpa.22069en_US
dc.identifier.sourceAmerican Journal of Physical Anthropologyen_US
dc.identifier.citedreferenceMortola JP, Frappell PB, Frappell DE, Villena‐Cabrera N, Villena‐Cabrera M, Peña F. 1992. Ventilation and gaseous metabolism in infants born at high altitude, and their responses to hyperoxia. Am Rev Respir Dis 146: 1206 – 1209.en_US
dc.identifier.citedreferenceJohnson RL Jr., Cassidy SS, Grover RF, Schutte JE, Epstein RH. 1985. Functional capacities of lungs and thorax in beagles after prolonged residence at 3,100 m. J Appl Physiol 59: 1773 – 1782.en_US
dc.identifier.citedreferenceJulian CG, Wilson MJ, Lopez M, Yamashiro H, Tellez W, Rodriguez A, Bigham AW, Shriver MD, Rodriguez C, Vargas E, Moore LG. 2009. Augmented uterine artery blood flow and oxygen delivery protect Andeans from altitude‐associated reductions in fetal growth. Am J Physiol Regul Integr Comp Physiol 296: R1564 – R1575.en_US
dc.identifier.citedreferenceKotecha SJ, Watkins WJ, Heron J, Henderson J, Dunstan FD, Kotecha S. 2010. Spirometric lung function in school‐aged children: effect of intrauterine growth retardation and catch‐up growth. Am J Respir Crit Care Med 181: 969 – 974.en_US
dc.identifier.citedreferenceLawlor DA, Ebrahim S, Davey Smith G. 2005. Association of birth weight with adult lung function: findings from the British women's heart and health study and a meta‐analysis. Thorax 60: 851 – 858.en_US
dc.identifier.citedreferenceLechner AJ, Banchero N. 1980. Lung morphometry in guinea pigs acclimated to hypoxia during growth. Respir Physiol 42: 155 – 169.en_US
dc.identifier.citedreferenceMonge MC. 1948. Acclimatization in the Andes. Baltimore, MD: John Hopkins University Press.en_US
dc.identifier.citedreferenceMoore LG. 2001. Human genetic adaptation to high altitude. High Alt Med Biol 2: 257 – 279.en_US
dc.identifier.citedreferenceMoore LG, Brodeur P, Chumbe O, D'Brot J, Hofmeister S, Monge C. 1986. Maternal hypoxic ventilatory response, ventilation, and infant birth weight at 4,300 m. J Appl Physiol 60: 1401 – 1406.en_US
dc.identifier.citedreferenceMueller WH, Yen F, Rothhammer F, Schull WJ. 1978. A multinational Andean genetic and health program. VI. Physiological measurements of lung function in a hypoxic environment. Hum Biol 50: 489 – 513.en_US
dc.identifier.citedreferenceParra EJ, Kittles RA, Shriver MD. 2004. Implications of correlations between skin color and genetic ancestry for biomedical research. Nat Genet 36: S54 – S60.en_US
dc.identifier.citedreferencePhillips DI, Barker DJ, Hales CN, Hirst S, Osmond C. 1994. Thinness at birth and insulin resistance in adult life. Diabetologia 37: 150 – 154.en_US
dc.identifier.citedreferencePolgar G, Weng TR. 1979. The functional development of the respiratory system from the period of gestation to adulthood. Am Rev Respir Dis 120: 625 – 695.en_US
dc.identifier.citedreferenceRupert JL, Hochachka PW. 2001. The evidence for hereditary factors contributing to high altitude adaptation in Andean natives: a review. High Alt Med Biol 2: 235 – 256.en_US
dc.identifier.citedreferenceSchoene RB, Roach RC, Lahiri S, Peters Jr. RM, Hackett PH, Santolaya R. 1990. Increased diffusion capacity maintains arterial saturation during exercise in the Quechua Indians of Chilean Altiplano. Am J Hum Biol 2: 663 – 668.en_US
dc.identifier.citedreferenceSekhon H, Thurlbeck W. 1996a. Lung morphometric changes after exposure to hypobaria and/or hypoxia and undernutrition. Respir Physiol 106: 99 – 107.en_US
dc.identifier.citedreferenceSekhon HS, Thurlbeck WM. 1996b. Time course of lung growth following exposure to hypobaria and/or hypoxia in rats. Respir Physiol 105: 241 – 252.en_US
dc.identifier.citedreferenceShriver M, Parra E, Dios S, Bonilla C, Norton H, Jovel C, Pfaff C, Jones C, Massac A, Cameron N, Baron A, Jackson T, Argyropoulos G, Jin L, Hoggart CJ, McKeigue PM, Kittles RA. 2003. Skin pigmentation, biogeographical ancestry and admixture mapping. Hum Genet 112: 387 – 399.en_US
dc.identifier.citedreferenceSimonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R. 2010. Genetic evidence for high‐altitude adaptation in Tibet. Science 329: 72 – 75.en_US
dc.identifier.citedreferenceSiri W. 1956. The gross composition of the body. Adv Biol Med Phys 4: 239 – 280.en_US
dc.identifier.citedreferenceSun SF, Droma TS, Zhang JG, Tao JX, Huang SY, McCullough RG, McCullough RE, Reeves CS, Reeves JT, Moore LG. 1990. Greater maximal O2 uptakes and vital capacities in Tibetan than Han residents of Lhasa. Respir Physiol 79: 151 – 161.en_US
dc.identifier.citedreferenceVargas E, Beard J, Haas J, Cudkowicz L. 1982. Pulmonary diffusing capacity in young Andean highland children. Respiration 43: 330 – 335.en_US
dc.identifier.citedreferenceVelasquez T, Martinez C, Pezzia W, Gallardo N. 1968. Ventilatory effects of oxygen in high altitude natives. Resp Physiol 5: 211 – 220.en_US
dc.identifier.citedreferenceWagner PD, Araoz M, Boushel R, Calbet JA, Jessen B, Radergran G, Spielvogel H, Sondegaard H, Wagner H, Saltin B. 2002. Pulmonary gas exchange and acid‐base state at 5,260m in high‐altitude Bolivians and acclimatized lowlanders. J Appl Physiol 92: 1393 – 400.en_US
dc.identifier.citedreferenceWeitz CA, Garruto RM, Chin C‐T, Liu J‐C, Liu R‐L, He X. 2002. Lung function of Han Chinese born and raised near sea level and at high altitude in Western China. Am J Hum Biol 14: 494 – 510.en_US
dc.identifier.citedreferenceWilmore JH, Vodak PA, Parr RB, Girandola RN, Billing JE. 1980. Further simplification of a method for determination of residual lung volume. Med Sci Sports Exerc 12: 216 – 218.en_US
dc.identifier.citedreferenceWilson MJ, Lopez M, Vargas M, Julian C, Tellez W, Rodriguez A, Bigham A, Armaza F, Niermeyer S, Shriver M, Vargas E, Moore LG. 2007. Greater uterine artery blood flow during pregnancy in multigenerational (Andean) than shorter‐term (European) high‐altitude residents. Am J Physiol Regul Integr Comp Physiol 293: R1313 – R1324.en_US
dc.identifier.citedreferenceYi X, Liang Y, Huerta‐Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Asan Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, Zhou G, Tang M, Qin J, Wang T, Feng S, Li G, Huasang, Luosang J, Wang W, Chen F, Wang Y, Zheng X, Li Z, Bianba Z, Yang G, Wang X, Tang S, Gao G, Chen Y, Luo Z, Gusang L, Cao Z, Zhang Q, Ouyang W, Ren X, Liang H, Zheng H, Huang Y, Li J, Bolund L, Kristiansen K, Li Y, Zhang Y, Zhang X, Li R, Li S, Yang H, Nielsen R, Wang J, Wang J. et al. 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329: 75 – 78.en_US
dc.identifier.citedreferenceZhuang J, Droma T, Sutton JR, Groves BM, McCullough RE, McCullough RG, Sun S, Moore LG. 1996. Smaller alveolar‐arterial O2 gradients in Tibetan than Han residents of Lhasa (3658 m). Respir Physiol 103: 75 – 82.en_US
dc.identifier.citedreferenceBarker DJ. 1995. Fetal origins of coronary heart disease. BMJ 311: 171 – 174.en_US
dc.identifier.citedreferenceBarker DJ, Bull AR, Osmond C, Simmonds SJ. 1990. Fetal and placental size and risk of hypertension in adult life. BMJ 301: 259 – 262.en_US
dc.identifier.citedreferenceBarker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. 1993. Type 2 (non‐insulin‐dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36: 62 – 67.en_US
dc.identifier.citedreferenceBartlett D Jr, Remmers JE. 1971. Effects of high altitude exposure on the lungs of young rats. Respir Physiol 13: 116 – 125.en_US
dc.identifier.citedreferenceBeall CM. 2000. Tibetan and Andean contrasts in adaptation to high‐altitude hypoxia. Adv Exp Med Biol 475: 63 – 74.en_US
dc.identifier.citedreferenceBeall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, Li JC, Liang Y, McCormack M, Montgomery HE, Pan H, Robbins PA, Shianna KV, Tam SC, Tsering N, Veeramah KR, Wang W, Wangdui P, Weale ME, Xu Y, Xu Z, Yang L, Zaman MJ, Zeng C, Zhang L, Zhang X, Zhaxi P, Zheng YT et al. 2010. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci USA 107: 11459 – 11464.en_US
dc.identifier.citedreferenceBeall CM, Song K, Elston RC, Goldstein MC. 2004. Higher offspring survival among Tibetan women with high oxygen saturation genotypes residing at 4,000 m. Proc Natl Acad Sci USA 101: 14300 – 14304.en_US
dc.identifier.citedreferenceBigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, López Herráez D, Brutsaert T, Parra EJ, Moore LG, Shriver MD. 2010. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet 6. p ii: e1001116.en_US
dc.identifier.citedreferenceBigham AW, Kiyamu M, León‐Velarde F, Parra EJ, Rivera‐Ch M, Shriver MD, Brutsaert TD. 2008. Angiotensin‐converting enzyme genotype and arterial oxygen saturation at high altitude in Peruvian Quechua. High Alt Med Biol 9: 167 – 178.en_US
dc.identifier.citedreferenceBonilla C, Parra EJ, Pfaff CL, Dios S, Marshall JA, Hamman RF, Ferrell RE, Hoggart CL, McKeigue PM, Shriver MD. 2004. Admixture in the Hispanics of the San Luis Valley, Colorado, and its implications for complex trait gene mapping. Ann Hum Genet 68: 139 – 153.en_US
dc.identifier.citedreferenceBoyce AJ, Haight JS, Rimmer DB, Harrison GA. 1974. Respiratory function in Peruvian Quechua Indians. Ann Hum Biol 1: 137 – 148.en_US
dc.identifier.citedreferenceBrutsaert T, Parra E, Shriver M, Gamboa A, Palacios J, Rivera M, Rodriguez I, León‐Velarde F. 2003. Spanish genetic admixture is associated with larger V(O2) max decrement from sea level to 4338 m in Peruvian Quechua. J Appl Physiol 92: 519 – 528.en_US
dc.identifier.citedreferenceBrutsaert T, Parra E, Shriver M, Gamboa A, Rivera‐Ch M, León‐Velarde F. 2005. Ancestry explains the blunted ventilatory response to sustained hypoxia and lower exercise ventilation of Quechua altitude natives. Am J Physiol Regul Integr Comp Physiol 289: R225 – R234.en_US
dc.identifier.citedreferenceBrutsaert TD, Parra E, Shriver M, Gamboa A, Palacios JA, Rivera M, Rodriguez I, León‐Velarde F. 2004. Effects of birthplace and individual genetic admixture on lung volume and exercise phenotypes of Peruvian Quechua. Am J Phys Anthropol 123: 390 – 398.en_US
dc.identifier.citedreferenceBrutsaert TD, Soria R, Caceres E, Spielvogel H, Haas JD. 1999. Effect of developmental and ancestral high altitude exposure on chest morphology and pulmonary function in Andean and European/North American natives. Am J Hum Biol 11: 383 – 395.en_US
dc.identifier.citedreferenceBurri PH, Weibel ER. 1971. Morphometric estimation of pulmonary diffusion capacity. II. Effect of PO2 on the growing lung. Adaption of the growing rat lung to hypoxia and hyperoxia. Respir Physiol 1971: 247 – 264.en_US
dc.identifier.citedreferenceCanoy D, Pekkanen J, Elliott P, Pouta A, Laitinen J, Hartikainen A‐L, Zitting P, Patel S, Little MP, Jarvelin M‐J. 2007. Early growth and adult respiratory function in men and women followed from the fetal period to adulthood. Thorax 62: 396 – 402.en_US
dc.identifier.citedreferenceChakraborty R, Barton SA, Ferrell RE, Schull WJ. 1989. Ethnicity determination by names among the Aymara of Chile and Bolivia. Hum Biol 61: 159 – 177.en_US
dc.identifier.citedreferenceCopland I, Post M. 2004. Lung development and fetal lung growth. Paediatr Respir Rev 5 Suppl A: S259 – 64.en_US
dc.identifier.citedreferenceCunningham EL, Brody JS, Jain BP. 1974. Lung growth induced by hypoxia. J Appl Physiol 37: 362 – 366.en_US
dc.identifier.citedreferenceDeGraff AC Jr, Grover RF, Johnson RL Jr, Hammond JW Jr, Miller JM. 1970. Diffusing capacity of the lung in Caucasians native to 3,100 m. J Appl Physiol 29: 71 – 76.en_US
dc.identifier.citedreferenceDempsey JA, Reddan WG, Birnbaum ML, Forster HV, Thoden JS, Grover RF, Rankin J. 1971. Effects of acute through life‐long hypoxic exposure on exercise pulmonary gas‐exchange. Respir Physiol 13: 62 – 89.en_US
dc.identifier.citedreferenceDroma T, McCullough RG, McCullough RE, Zhuang JG, Cymerman A, Sun SF, Sutton JR, Moore LG. 1991. Increased vital and total lung capacities in Tibetan compared to Han residents of Lhasa (3,658 m). Am J Phys Anthropol 86: 341 – 351.en_US
dc.identifier.citedreferenceDurnin JV, Womersley J. 1974. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32: 77 – 97.en_US
dc.identifier.citedreferenceFall CH, Osmond C, Barker DJ, Clark PM, Hales CN, Stirling Y, Meade TW. 1995. Fetal and infant growth and cardiovascular risk factors in women. BMJ 310: 428 – 432.en_US
dc.identifier.citedreferenceFaridy EE, Sanii MR, Thiveris JA. 1988. Fetal lung growth: influence of maternal hypoxia and hyperoxia in rats. Respir Physiol 73: 225 – 242.en_US
dc.identifier.citedreferenceFrisancho AR, Frisancho HG, Albalak R, Villain M, Vargas E, Soria R. 1997. Developmental, genetic and environmental components of lung volumes at high altitude. Am J Hum Biol 9: 191 – 203.en_US
dc.identifier.citedreferenceFrisancho AR, Velásquez T, Sanchez J. 1973. Influence of developmental adaptation on lung function at high altitude. Hum Biol 45: 583 – 594.en_US
dc.identifier.citedreferenceFrisancho AR. 1969. Human growth and pulmonary function of a high altitude Peruvian Quechua population. Hum Biol 91: 365 – 379.en_US
dc.identifier.citedreferenceFrisancho R. 1983. The high altitude native. In: Sutton JR, Houston CS, Jones NL, editors. Hypoxia, exercise and altitude. New York: Alan R. Liss. p 383 – 407.en_US
dc.identifier.citedreferenceFrisancho AR. 2009. Developmental adaptation: where we go from here. Am J Hum Biol 21: 694 – 703.en_US
dc.identifier.citedreferenceGreksa LP. 1986. Growth patterns of European and Amerindian high altitude natives. Curr Anthropol 22: 72 – 73.en_US
dc.identifier.citedreferenceGreksa LP. 1990. Developmental responses to high‐altitude hypoxia in Bolivian children of European ancestry: a test of the developmental adaptation hypothesis. Am J Hum Biol 2: 603 – 612.en_US
dc.identifier.citedreferenceGreksa LP. 1996. Evidence for a genetic basis to the enhanced total lung capacity of Andean highlanders. Hum Biol 68: 119 – 129.en_US
dc.identifier.citedreferenceGreksa LP, Spielvogel H, Caceres E. 1994. Total lung capacity in young highlanders of Aymara ancestry. Am J Phys Anthropol 94: 477 – 486.en_US
dc.identifier.citedreferenceGreksa LP, Spielvogel H, Caceres E, Paredes‐Fernandez L. 1987. Lung function of young Aymara highlanders. Ann Hum Biol 14: 533 – 542.en_US
dc.identifier.citedreferenceGuleria JS, Pande JN, Sethi PK, Roy SB. 1971. Pulmonary diffusing capacity at high altitude. J Appl Physiol 31: 536 – 543.en_US
dc.identifier.citedreferenceHanis CL, Chakraborty R, Ferrell RE, Schull WJ. 1986. Individual admixture estimates: disease associations and individual risk of diabetes and gallbladder disease among Mexican‐Americans in Starr County, Texas. Am J Phys Anthropol 70: 433 – 441.en_US
dc.identifier.citedreferenceHarrison GA. 1966. Human adaptability with reference to the IBP proposals for high altitude research. In: Baker PT, Weiner JS, editors. The biology of human adaptability. Oxford: Clarendon Press. p 509 – 519.en_US
dc.identifier.citedreferenceHarrison GA, Kuchemann CF, Moore MAS, Boyce AJ, Baju T, Mourant AE, Godber MJ, Glasgow BG, Kopec AC, Tills D, Clegg EJ. 1969. The effects of altitudinal variation in Ethiopian populations. Philos Trans R Soc Lond 256: 147 – 182.en_US
dc.identifier.citedreferenceHochachka PW, Rupert JL, Monge C. 1999. Adaptation and conservation of physiological systems in the evolution of human hypoxia tolerance. Comp Biochem Physiol A Mol Integr Physiol 124: 1 – 17.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.