Show simple item record

Mutation spectrum in the large GTPase dynamin 2, and genotype–phenotype correlation in autosomal dominant centronuclear myopathy

dc.contributor.authorSikkema‐raddatz, Birgiten_US
dc.contributor.authorSijmons, Rolf H.en_US
dc.date.accessioned2012-07-12T17:24:38Z
dc.date.available2013-08-01T14:04:40Zen_US
dc.date.issued2012-06en_US
dc.identifier.citationSikkema‐raddatz, Birgit ; Sijmons, Rolf H. (2012). "Mutation spectrum in the large GTPase dynamin 2, and genotypeâ phenotype correlation in autosomal dominant centronuclear myopathy ." Human Mutation 33(6): 949-959. <http://hdl.handle.net/2027.42/92087>en_US
dc.identifier.issn1059-7794en_US
dc.identifier.issn1098-1004en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92087
dc.description.abstractCentronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 ( DNM2 ), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM‐related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice‐site mutation. Genotype–phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot–Marie–Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue‐specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT. Hum Mutat 33:949–959, 2012. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherHereditary Motor and Sensory Neuropathy Type IIen_US
dc.subject.otherADCNMen_US
dc.subject.otherDNM2en_US
dc.subject.otherCharcot–Marie–Tooth Neuropathyen_US
dc.subject.otherCongenital Myopathyen_US
dc.subject.otherCentronuclear Myopathyen_US
dc.subject.otherEndocytosisen_US
dc.subject.otherRYR1en_US
dc.subject.otherBIN1en_US
dc.subject.otherMyotubular Myopathyen_US
dc.subject.otherMTM1en_US
dc.subject.otherHMSNIIen_US
dc.subject.otherCMT2Men_US
dc.subject.otherDI‐CMTBen_US
dc.subject.otherCMTD1Ben_US
dc.titleMutation spectrum in the large GTPase dynamin 2, and genotype–phenotype correlation in autosomal dominant centronuclear myopathyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pediatrics, University of Michigan Medical Center, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherMaternal Fetal Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texasen_US
dc.contributor.affiliationotherNationwide Children's Hospital, Ohio State University, Columbus, Ohioen_US
dc.contributor.affiliationotherDepartment of Obstetrics and Gynecology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.en_US
dc.contributor.affiliationotherGenzyme Genetics, Westborough, Massachusetts.en_US
dc.contributor.affiliationotherInstitut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, F‐67404 Illkirch, France.en_US
dc.contributor.affiliationotherChildren's Hospitals and Clinics of Minnesota, Minneapolis, Minnesotaen_US
dc.contributor.affiliationotherDepartment of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR7104, University of Strasbourg, Collège de France, Illkirch, Franceen_US
dc.contributor.affiliationotherFaculté de Médecine, Laboratoire de Diagnostic Génétique, Nouvel Hopital Civil, Strasbourg, Franceen_US
dc.contributor.affiliationotherDivision of Genetics and Program in Genomics, The Manton Center for Orphan Disease Research, Children's Hospital Boston, Harvard Medical School, Boston, Massachusettsen_US
dc.contributor.affiliationotherInstitut de Myologie, INSERM U974, University Pierre et Marie Curie UM76, CNRS UMR7215, Groupe Hospitalier Pitié‐Salpêtrière, Paris, Franceen_US
dc.contributor.affiliationotherDepartment of Neurology, Ege University School of Medicine, Izmir, Turkeyen_US
dc.contributor.affiliationotherHuman Genetics, The University of Chicago, Chicago, Illinoisen_US
dc.contributor.affiliationotherDepartment of Neurology, Medical School of the University of Sao Paulo Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazilen_US
dc.contributor.affiliationotherDepartment of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmarken_US
dc.contributor.affiliationotherDepartment of Neurology, Hopital Civil, Strasbourg, Franceen_US
dc.contributor.affiliationotherThe Folkhälsan Institute of Genetics, Helsinki, Finlanden_US
dc.contributor.affiliationotherDepartment of Medical Genetics, Haartman Institute, University of Helsinki, Finlanden_US
dc.contributor.affiliationotherLaboratory of Musculoskeletal Cell Biology, Instituto Ortopedico Rizzoli, Bologna, Italyen_US
dc.contributor.affiliationotherInstitute of Biomedicine, Sahlgrenska University Hospital, Gothenburg, Swedenen_US
dc.contributor.affiliationotherDepartment of Clinical Genetics, Odense University Hospital, Odense, Denmarken_US
dc.contributor.affiliationotherINSERM UMR788, University Paris 11, Hôpital du Kremlin Bicetre, Le Kremlin‐Bicetre, Franceen_US
dc.contributor.affiliationotherDivision of Human Genetics, National Health Laboratory Service and School of Pathology, University of the Witwatersrand, Johannesburg, South Africaen_US
dc.contributor.affiliationotherInstitute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Swedenen_US
dc.contributor.affiliationotherDepartment of Neurology, Federal University of São Paulo, São Paulo, Brazilen_US
dc.contributor.affiliationotherService Génétique, Centre Hospitalier Regional Universitaire, Lille, Franceen_US
dc.contributor.affiliationotherDepartment Génétique, GH Pitié‐Salpêtrière, Paris, Franceen_US
dc.contributor.affiliationotherService Génétique Médicale, Centre Hospitalier Universitaire Nice, Nice, Franceen_US
dc.contributor.affiliationotherDepartment Medical Genetics, Sydney Children's Hospital, Randwick, Australiaen_US
dc.contributor.affiliationotherService de Médecine Infantile III et Génétique Clinique, CHU de Nancy, Nancy, Franceen_US
dc.contributor.affiliationotherFaculté de Médecine, Université de Lorraine, Vandoeuvre‐les‐Nancy, Franceen_US
dc.contributor.affiliationotherDepartment of Neurology, Azienda ospedaliera Pisana, Pisa, Italyen_US
dc.contributor.affiliationotherServicio de Neurologia, Hospital Donostia, San Sebastian, Spainen_US
dc.contributor.affiliationotherDepartment of Neuromuscular Investigations and Pathologies, CHU, Besancon, Franceen_US
dc.contributor.affiliationotherService de Neurologie, CHU, Hôpital Nord, Saint Etienne, Franceen_US
dc.contributor.affiliationotherNeurologia, Hospital Universitario de Cruces, Baracaldo, Spainen_US
dc.contributor.affiliationotherPediatric Neurology, Gent University Hospital, Gent, Belgiumen_US
dc.contributor.affiliationotherDepartment of Neurosciences, Bambino Gesu' Children's Research Hospital, Rome, Italyen_US
dc.contributor.affiliationotherHôpital Marin, Hendaye, Franceen_US
dc.contributor.affiliationotherService Génétique, Hôpitaux de Rouen, Franceen_US
dc.contributor.affiliationotherLaboratoire de Génétique Moléculaire, INSERM U827, Montpellier, Franceen_US
dc.contributor.affiliationotherGenetics Programme, North York General Hospital, Toronto, Canadaen_US
dc.contributor.affiliationotherCarver College of Medicine, University of Iowa, Iowa City, Iowaen_US
dc.contributor.affiliationotherDepartment of Health, Behavior and Society, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Marylanden_US
dc.contributor.affiliationotherDepartment of Neurology and Neurosurgery, The John Hopkins School of Medicine, Baltimore, Marylanden_US
dc.contributor.affiliationotherHennepin County Medical Center, Minneapolis, Minnesotaen_US
dc.contributor.affiliationotherDepartment of Neurology, Gillette Children's Specialty Healthcare, Saint Paul, Minnesotaen_US
dc.contributor.affiliationotherDivision of Genetics, MetroHealth Medical Centers, Case Western Reserve University School of Medicine, Cleveland, Ohioen_US
dc.contributor.affiliationotherDepartment of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusettsen_US
dc.contributor.affiliationotherDepartment of Pediatrics, Tufts Medical Center, Boston, Massachusettsen_US
dc.contributor.affiliationotherDepartment of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusettsen_US
dc.contributor.affiliationotherDepartments of Neurology and Medicine, University of Washington and VA Medical Center, Seattle, Washingtonen_US
dc.contributor.affiliationotherDepartment of Medicine, University of Washington, Seattle, Washingtonen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92087/1/22067_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92087/2/humu_22067_sm_SuppInfo.pdf
dc.identifier.doi10.1002/humu.22067en_US
dc.identifier.sourceHuman Mutationen_US
dc.identifier.citedreferenceSusman RD, Quijano‐Roy S, Yang N, Webster R, Clarke NF, Dowling J, Kennerson M, Nicholson G, Biancalana V, Ilkovski B, Flanigan KM, Arbuckle S, and others. 2010. Expanding the clinical, pathological and MRI phenotype of DNM2‐related centronuclear myopathy. Neuromuscul Disord 20: 229 – 237.en_US
dc.identifier.citedreferenceShpetner HS, Vallee RB. 1989. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59: 421 – 432.en_US
dc.identifier.citedreferenceSever S, Muhlberg AB, Schmid SL. 1999. Impairment of dynamin's GAP domain stimulates receptor‐mediated endocytosis. Nature 398: 481 – 486.en_US
dc.identifier.citedreferenceSchessl J, Medne L, Hu Y, Zou Y, Brown MJ, Huse JT, Torigian DA, Jungbluth H, Goebel HH, Bonnemann CG. 2007. MRI in DNM2‐related centronuclear myopathy: evidence for highly selective muscle involvement. Neuromuscul Disord 17: 28 – 32.en_US
dc.identifier.citedreferenceSchafer DA, Weed SA, Binns D, Karginov AV, Parsons JT, Cooper JA. 2002. Dynamin2 and cortactin regulate actin assembly and filament organization. Curr Biol 12: 1852 – 1857.en_US
dc.identifier.citedreferenceRomero NB. 2010. Centronuclear myopathies: a widening concept. Neuromuscul Disord 20: 223 – 228.en_US
dc.identifier.citedreferencePraefcke GJ, McMahon HT. 2004. The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5: 133 – 147.en_US
dc.identifier.citedreferenceNicot AS, Toussaint A, Tosch V, Kretz C, Wallgren‐Pettersson C, Iwarsson E, Kingston H, Garnier JM, Biancalana V, Oldfors A, Mandel JL, Laporte J. 2007. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 39: 1134 – 1139.en_US
dc.identifier.citedreferenceNicot AS, Laporte J. 2008. Endosomal phosphoinositides and human diseases. Traffic 9: 1240 – 1249.en_US
dc.identifier.citedreferenceMelberg A, Kretz C, Kalimo H, Wallgren‐Pettersson C, Toussaint A, Bohm J, Stalberg E, Laporte J. 2010. Adult course in dynamin 2 dominant centronuclear myopathy with neonatal onset. Neuromuscul Disord 20: 53 – 56.en_US
dc.identifier.citedreferenceLiu YW, Lukiyanchuk V, Schmid SL. 2011b. Common membrane trafficking defects of disease‐associated dynamin 2 mutations. Traffic 12: 1620 – 1633.en_US
dc.identifier.citedreferenceLiu N, Bezprozvannaya S, Shelton JM, Frisard MI, Hulver MW, McMillan RP, Wu Y, Voelker KA, Grange RW, Richardson JA, Bassel‐Duby R, Olson EN. 2011a. Mice lacking microRNA 133a develop dynamin 2‐dependent centronuclear myopathy. J Clin Invest 121: 3258 – 3268.en_US
dc.identifier.citedreferenceLiewluck T, Lovell TL, Bite AV, Engel AG. 2010. Sporadic centronuclear myopathy with muscle pseudohypertrophy, neutropenia, and necklace fibers due to a DNM2 mutation. Neuromuscul Disord 20: 801 – 804.en_US
dc.identifier.citedreferenceLaporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N. 1996. A gene mutated in X‐linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13: 175 – 182.en_US
dc.identifier.citedreferenceKruchten AE, McNiven MA. 2006. Dynamin as a mover and pincher during cell migration and invasion. J Cell Sci 119: 1683 – 1690.en_US
dc.identifier.citedreferenceZuchner S, Noureddine M, Kennerson M, Verhoeven K, Claeys K, De Jonghe P, Merory J, Oliveira SA, Speer MC, Stenger JE, Walizada G, Zhu D, and others. 2005. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot–Marie–Tooth disease. Nat Genet 37: 289 – 294.en_US
dc.identifier.citedreferenceKoutsopoulos OS, Koch C, Tosch V, Bohm J, North KN, Laporte J. 2011. Mild functional differences of dynamin 2 mutations associated to centronuclear myopathy and Charcot–Marie Tooth peripheral neuropathy. PLoS One 6: e27498.en_US
dc.identifier.citedreferenceWilmshurst JM, Lillis S, Zhou H, Pillay K, Henderson H, Kress W, Muller CR, Ndondo A, Cloke V, Cullup T, Bertini E, Boennemann C, and others. 2010. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol 68: 717 – 726.en_US
dc.identifier.citedreferenceWarnock DE, Baba T, Schmid SL. 1997. Ubiquitously expressed dynamin‐II has a higher intrinsic GTPase activity and a greater propensity for self‐assembly than neuronal dynamin‐I. Mol Biol Cell 8: 2553 – 2562.en_US
dc.identifier.citedreferenceWang L, Barylko B, Byers C, Ross JA, Jameson DM, Albanesi JP. 2010. Dynamin 2 mutants linked to centronuclear myopathies form abnormally stable polymers. J Biol Chem 285: 22753 – 22757.en_US
dc.identifier.citedreferenceToussaint A, Cowling BS, Hnia K, Mohr M, Oldfors A, Schwab Y, Yis U, Maisonobe T, Stojkovic T, Wallgren‐Pettersson C, Laugel V, Echaniz‐Laguna A, Mandel JL, Nishino I, Laporte J. 2011. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol 121: 253 – 266.en_US
dc.identifier.citedreferenceTosch V, Rohde HM, Tronchere H, Zanoteli E, Monroy N, Kretz C, Dondaine N, Payrastre B, Mandel JL, Laporte J. 2006. A novel PtdIns3P and PtdIns(3,5)P2 phosphatase with an inactivating variant in centronuclear myopathy. Hum Mol Genet 15: 3098 – 3106.en_US
dc.identifier.citedreferenceThompson HM, Cao H, Chen J, Euteneuer U, McNiven MA. 2004. Dynamin 2 binds gamma‐tubulin and participates in centrosome cohesion. Nat Cell Biol 6: 335 – 342.en_US
dc.identifier.citedreferenceKlein DE, Lee A, Frank DW, Marks MS, Lemmon MA. 1998. The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J Biol Chem 273: 27725 – 27733.en_US
dc.identifier.citedreferenceBeroud C, Collod‐Beroud G, Boileau C, Soussi T, Junien C. 2000. UMD (Universal mutation database): a generic software to build and analyze locus‐specific databases. Hum Mutat 15: 86 – 94.en_US
dc.identifier.citedreferenceBevilacqua JA, Monnier N, Bitoun M, Eymard B, Ferreiro A, Monges S, Lubieniecki F, Taratuto AL, Laquerriere A, Claeys KG, Marty I, Fardeau M, Guicheney P, Lunardi J, Romero NB. 2011. Recessive RYR1 mutations cause unusual congenital myopathy with prominent nuclear internalization and large areas of myofibrillar disorganization. Neuropathol Appl Neurobiol 37: 271 – 284.en_US
dc.identifier.citedreferenceBitoun M, Bevilacqua JA, Eymard B, Prudhon B, Fardeau M, Guicheney P, Romero NB. 2009a. A new centronuclear myopathy phenotype due to a novel dynamin 2 mutation. Neurology 72: 93 – 95.en_US
dc.identifier.citedreferenceBitoun M, Bevilacqua JA, Prudhon B, Maugenre S, Taratuto AL, Monges S, Lubieniecki F, Cances C, Uro‐Coste E, Mayer M, Fardeau M, Romero NB, Guicheney P. 2007. Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurol 62: 666 – 670.en_US
dc.identifier.citedreferenceBitoun M, Durieux AC, Prudhon B, Bevilacqua JA, Herledan A, Sakanyan V, Urtizberea A, Cartier L, Romero NB, Guicheney P. 2009b. Dynamin 2 mutations associated with human diseases impair clathrin‐mediated receptor endocytosis. Hum Mutat 30: 1419 – 1427.en_US
dc.identifier.citedreferenceBitoun M, Maugenre S, Jeannet PY, Lacene E, Ferrer X, Laforet P, Martin JJ, Laporte J, Lochmuller H, Beggs AH, Fardeau M, Eymard B, Romero NB, Guicheney P. 2005. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 37: 1207 – 1209.en_US
dc.identifier.citedreferenceBitoun M, Stojkovic T, Prudhon B, Maurage CA, Latour P, Vermersch P, Guicheney P. 2008. A novel mutation in the dynamin 2 gene in a Charcot–Marie–Tooth type 2 patient: clinical and pathological findings. Neuromuscul Disord 18: 334 – 338.en_US
dc.identifier.citedreferenceChappie JS, Acharya S, Liu YW, Leonard M, Pucadyil TJ, Schmid SL. 2009. An intramolecular signaling element that modulates dynamin function in vitro and in vivo. Mol Biol Cell 20: 3561 – 3571.en_US
dc.identifier.citedreferenceClaeys KG, Zuchner S, Kennerson M, Berciano J, Garcia A, Verhoeven K, Storey E, Merory JR, Bienfait HM, Lammens M, Nelis E, Baets J, and others. 2009. Phenotypic spectrum of dynamin 2 mutations in Charcot–Marie–Tooth neuropathy. Brain 132: 1741 – 1752.en_US
dc.identifier.citedreferenceCowling BS, Toussaint A, Amoasii L, Koebel P, Ferry A, Davignon L, Nishino I, Mandel JL, Laporte J. 2011. Increased expression of wild‐type or a centronuclear myopathy mutant of dynamin 2 in skeletal muscle of adult mice leads to structural defects and muscle weakness. Am J Pathol 178: 2224 – 2235.en_US
dc.identifier.citedreferenceDong J, Misselwitz R, Welfle H, Westermann P. 2000. Expression and purification of dynamin II domains and initial studies on structure and function. Protein Expr Purif 20: 314 – 323.en_US
dc.identifier.citedreferenceDurieux AC, Vignaud A, Prudhon B, Viou MT, Beuvin M, Vassilopoulos S, Fraysse B, Ferry A, Laine J, Romero NB, Guicheney P, Bitoun M. 2010. A centronuclear myopathy–dynamin 2 mutation impairs skeletal muscle structure and function in mice. Hum Mol Genet 19: 4820 – 4836.en_US
dc.identifier.citedreferenceEchaniz‐Laguna A, Nicot AS, Carre S, Franques J, Tranchant C, Dondaine N, Biancalana V, Mandel JL, Laporte J. 2007. Subtle central and peripheral nervous system abnormalities in a family with centronuclear myopathy and a novel dynamin 2 gene mutation. Neuromuscul Disord 17: 955 – 959.en_US
dc.identifier.citedreferenceFabrizi GM, Ferrarini M, Cavallaro T, Cabrini I, Cerini R, Bertolasi L, Rizzuto N. 2007. Two novel mutations in dynamin‐2 cause axonal Charcot–Marie–Tooth disease. Neurology 69: 291 – 295.en_US
dc.identifier.citedreferenceFaelber K, Posor Y, Gao S, Held M, Roske Y, Schulze D, Haucke V, Noe F, Daumke O. 2011. Crystal structure of nucleotide‐free dynamin. Nature 477: 556 – 560.en_US
dc.identifier.citedreferenceFerguson SM, Raimondi A, Paradise S, Shen H, Mesaki K, Ferguson A, Destaing O, Ko G, Takasaki J, Cremona O, O' Toole E, De Camilli P. 2009. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin‐coated pits. Dev Cell. 17: 811 – 822.en_US
dc.identifier.citedreferenceFischer D, Herasse M, Bitoun M, Barragan‐Campos HM, Chiras J, Laforet P, Fardeau M, Eymard B, Guicheney P, Romero NB. 2006. Characterization of the muscle involvement in dynamin 2‐related centronuclear myopathy. Brain 129: 1463 – 1469.en_US
dc.identifier.citedreferenceGallardo E, Claeys KG, Nelis E, Garcia A, Canga A, Combarros O, Timmerman V, De Jonghe P, Berciano J. 2008. Magnetic resonance imaging findings of leg musculature in Charcot–Marie–Tooth disease type 2 due to dynamin 2 mutation. J Neurol 255: 986 – 992.en_US
dc.identifier.citedreferenceGold ES, Underhill DM, Morrissette NS, Guo J, McNiven MA, Aderem A. 1999. Dynamin 2 is required for phagocytosis in macrophages. J Exp Med 190: 1849 – 1856.en_US
dc.identifier.citedreferenceGu C, Yaddanapudi S, Weins A, Osborn T, Reiser J, Pollak M, Hartwig J, Sever S. 2010. Direct dynamin–actin interactions regulate the actin cytoskeleton. EMBO J 29: 3593 – 3606.en_US
dc.identifier.citedreferenceHanisch F, Muller T, Dietz A, Bitoun M, Kress W, Weis J, Stoltenburg G, Zierz S. 2011. Phenotype variability and histopathological findings in centronuclear myopathy due to DNM2 mutations. J Neurol 258: 1085 – 1090.en_US
dc.identifier.citedreferenceJeub M, Bitoun M, Guicheney P, Kappes‐Horn K, Strach K, Druschky KF, Weis J, Fischer D. 2008. Dynamin 2‐related centronuclear myopathy: clinical, histological and genetic aspects of further patients and review of the literature. Clin Neuropathol 27: 430 – 438.en_US
dc.identifier.citedreferenceJones SM, Howell KE, Henley JR, Cao H, McNiven MA. 1998. Role of dynamin in the formation of transport vesicles from the trans‐Golgi network. Science 279: 573 – 577.en_US
dc.identifier.citedreferenceJungbluth H, Cullup T, Lillis S, Zhou H, Abbs S, Sewry C, Muntoni F. 2010. Centronuclear myopathy with cataracts due to a novel dynamin 2 (DNM2) mutation. Neuromuscul Disord 20: 49 – 52.en_US
dc.identifier.citedreferenceKenniston JA, Lemmon MA. 2010. Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients. EMBO J 29: 3054 – 3067.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.