Show simple item record

Two Types of Burst Firing in Gonadotrophin‐Releasing Hormone Neurones

dc.contributor.authorChu, Z. en_US
dc.contributor.authorTomaiuolo, M. en_US
dc.contributor.authorBertram, R. en_US
dc.contributor.authorMoenter, S. m.en_US
dc.date.accessioned2012-07-12T17:25:30Z
dc.date.available2013-09-03T15:38:27Zen_US
dc.date.issued2012-07en_US
dc.identifier.citationChu, Z.  ; Tomaiuolo, M.  ; Bertram, R.  ; Moenter, S. m. (2012). "Two Types of Burst Firing in Gonadotrophinâ Releasing Hormone Neurones." Journal of Neuroendocrinology 24(7). <http://hdl.handle.net/2027.42/92106>en_US
dc.identifier.issn0953-8194en_US
dc.identifier.issn1365-2826en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92106
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherNeuroendocrineen_US
dc.subject.otherParabolicen_US
dc.subject.otherBursten_US
dc.subject.otherOscillationen_US
dc.subject.otherHypothalamusen_US
dc.titleTwo Types of Burst Firing in Gonadotrophin‐Releasing Hormone Neuronesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationumDepartment of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationotherDepartment of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.en_US
dc.contributor.affiliationotherDepartment of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL, USA.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92106/1/j.1365-2826.2012.02313.x.pdf
dc.identifier.doi10.1111/j.1365-2826.2012.02313.xen_US
dc.identifier.sourceJournal of Neuroendocrinologyen_US
dc.identifier.citedreferenceCowan RL, Wilson CJ. Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J Neurophysiol 1994; 71: 17 – 32.en_US
dc.identifier.citedreferencePlant RE, Kim M. On the mechanism underlying bursting in the Aplysia abdominal ganglion R15 cell. Math Biosci 1975; 26: 357 – 375.en_US
dc.identifier.citedreferenceBaer SM, Rinzel J, Carrillo H. Analysis of an autonomous phase model for neuronal parabolic bursting. J Math Biol 1995; 33: 309 – 333.en_US
dc.identifier.citedreferenceCanolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. High gamma power is phase‐locked to theta oscillations in human neocortex. Science 2006; 313: 1626 – 1628.en_US
dc.identifier.citedreferenceChapman CA, Lacaille J‐C. Intrinsic theta‐frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum‐moleculare. J Neurophysiol 1999; 81: 1296 – 1307.en_US
dc.identifier.citedreferenceSteriade M, Contreras D, Curro Dossi R, Nunez A. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 1993; 13: 3284 – 3299.en_US
dc.identifier.citedreferenceSteriade M, Amzica F, Nunez A. Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells. J Neurophysiol 1993; 70: 1385 – 1400.en_US
dc.identifier.citedreferenceLampl I, Reichova I, Ferster D. Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 1999; 22: 361 – 374.en_US
dc.identifier.citedreferenceDeFazio RA, Moenter SM. Estradiol feedback alters potassium currents and firing properties of gonadotropin‐releasing hormone neurons. Mol Endocrinol 2002; 16: 2255 – 2265.en_US
dc.identifier.citedreferenceZhang C, Bosch MA, Levine JE, Ronnekleiv OK, Kelly MJ. Gonadotropin‐releasing hormone neurons express K(ATP) channels that are regulated by estrogen and responsive to glucose and metabolic inhibition. J Neurosci 2007; 27: 10153 – 10164.en_US
dc.identifier.citedreferenceZhang C, Roepke TA, Kelly MJ, Ronnekleiv OK. Kisspeptin depolarizes gonadotropin‐releasing hormone neurons through activation of TRPC‐like cationic channels. J Neurosci 2008; 28: 4423 – 4434.en_US
dc.identifier.citedreferenceSun J, Chu Z, Moenter SM. Diurnal in vivo and rapid in vitro effects of estradiol on voltage‐gated calcium channels in gonadotropin‐releasing hormone neurons. J Neurosci 2010; 30: 3912 – 3923.en_US
dc.identifier.citedreferenceSun J, Moenter SM. Progesterone inhibits and androgen potentiates voltage‐gated calcium currents in gonadotropin‐releasing hormone (GnRH) neurons. Endocrinology 2010; 151: 5349 – 5358.en_US
dc.identifier.citedreferenceDeFazio RA, Heger S, Ojeda SR, Moenter SM. Activation of A‐type {gamma}‐aminobutyric acid receptors excites gonadotropin‐releasing hormone neurons. Mol Endocrinol 2002; 16: 2872 – 2891.en_US
dc.identifier.citedreferenceHerbison AE, Moenter SM. Depolarising and hyperpolarising actions of GABAA receptor activation on GnRH neurons: towards an emerging consensus. J Neuroendocrinol 2011; 23: 557 – 569.en_US
dc.identifier.citedreferenceMcHale N, Hollywood M, Sergeant G, Thornbury K. Origin of spontaneous rhythmicity in smooth muscle. J Physiol 2006; 570: 23 – 28.en_US
dc.identifier.citedreferenceBonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben‐Ari Y, Cossart R. GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 2009; 326: 1419 – 1424.en_US
dc.identifier.citedreferenceSullivan SD, DeFazio RA, Moenter SM. Metabolic regulation of fertility through presynaptic and postsynaptic signaling to gonadotropin‐releasing hormone neurons. J Neurosci 2003; 23: 8578 – 8585.en_US
dc.identifier.citedreferenceChristian CA, Moenter SM. Estradiol induces diurnal shifts in GABA transmission to gonadotropin‐releasing hormone neurons to provide a neural signal for ovulation. J Neurosci 2007; 27: 1913 – 1921.en_US
dc.identifier.citedreferenceSchaefer AT, Angelo K, Spors H, Margrie TW. Neuronal oscillations enhance stimulus discrimination by ensuring action potential precision. PLoS Biol 2006; 4: e163.en_US
dc.identifier.citedreferenceChadderton P, Margrie TW, Hausser M. Integration of quanta in cerebellar granule cells during sensory processing. Nature 2004; 428: 856 – 860.en_US
dc.identifier.citedreferenceHan S‐K, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE. Activation of gonadotropin‐releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 2005; 25: 11349 – 11356.en_US
dc.identifier.citedreferenceDumalska I, Wu M, Morozova E, Liu R, van den Pol A, Alreja M. Excitatory effects of the puberty‐initiating peptide kisspeptin and group I metabotropic glutamate receptor agonists differentiate two distinct subpopulations of gonadotropin‐releasing hormone neurons. J Neurosci 2008; 28: 8003 – 8013.en_US
dc.identifier.citedreferenceKeen KL, Wegner FH, Bloom SR, Ghatei MA, Terasawa E. An increase in kisspeptin‐54 release occurs with the pubertal increase in luteinizing hormone‐releasing hormone‐1 release in the stalk‐median eminence of female Rhesus monkeys in vivo. Endocrinology 2008; 149: 4151 – 4157.en_US
dc.identifier.citedreferenceLehman MN, Coolen LM, Goodman RL. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin‐releasing hormone secretion. Endocrinology 2010; 151: 3479 – 3489.en_US
dc.identifier.citedreferenceNavarro VM, Castellano JM, McConkey SM, Pineda R, Ruiz‐Pino F, Pinilla L, Clifton DK, Tena‐Sempere M, Steiner RA. Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat. Am J Physiol Endocrinol Metab 2011; 300: E202 – 210.en_US
dc.identifier.citedreferenceWakabayashi Y, Nakada T, Murata K, Ohkura S, Mogi K, Navarro VM, Clifton DK, Mori Y, Tsukamura H, Maeda K, Steiner RA, Okamura H. Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin‐releasing hormone secretion in the goat. J Neurosci 2010; 30: 3124 – 3132.en_US
dc.identifier.citedreferenceLevine JE, Pau KY, Ramirez VD, Jackson GL. Simultaneous measurement of luteinizing hormone‐releasing hormone and luteinizing hormone release in unanesthetized, ovariectomized sheep. Endocrinology 1982; 111: 1449 – 1455.en_US
dc.identifier.citedreferenceLevine JE, Norman RL, Gliessman PM, Oyama TT, Bangsberg DR, Spies HG. In vivo gonadotropin‐releasing hormone release and serum luteinizing hormone measurements in ovariectomized, estrogen‐treated rhesus macaques. Endocrinology 1985; 117: 711 – 721.en_US
dc.identifier.citedreferenceClarke IJ, Cummins JT. The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology 1982; 111: 1737 – 1739.en_US
dc.identifier.citedreferenceHileman SM, Lubbers LS, Petersen SL, Kuehl DE, Scott CJ, Jackson GL. Influence of testosterone on LHRH release, LHRH mRNA and proopiomelanocortin mRNA in male sheep. J Neuroendocrinol 1996; 8: 113 – 121.en_US
dc.identifier.citedreferenceMoenter SM, Brand RM, Midgley AR, Karsch FJ. Dynamics of gonadotropin‐releasing hormone release during a pulse. Endocrinology 1992; 130: 503 – 510.en_US
dc.identifier.citedreferencePitts GR, Nunemaker CS, Moenter SM. Cycles of transcription and translation do not comprise the gonadotropin‐releasing hormone pulse generator in GT1 cells. Endocrinology 2001; 142: 1858 – 1864.en_US
dc.identifier.citedreferenceMartinez de la Escalera G, Choi AL, Weiner RI. Generation and synchronization of gonadotropin‐releasing hormone (GnRH) pulses: intrinsic properties of the GT1‐1 GnRH neuronal cell line. Proc Natl Acad Sci USA 1992; 89: 1852 – 1855.en_US
dc.identifier.citedreferenceKrsmanovic LZ, Stojilkovic SS, Merelli F, Dufour SM, Virmani MA, Catt KJ. Calcium signaling and episodic secretion of gonadotropin‐releasing hormone in hypothalamic neurons. Proc Natl Acad Sci USA 1992; 89: 8462 – 8466.en_US
dc.identifier.citedreferenceKuehl‐Kovarik MC, Pouliot WA, Halterman GL, Handa RJ, Dudek FE, Partin KM. Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin‐releasing hormone neurons genetically targeted with green fluorescent protein. J Neurosci 2002; 22: 2313 – 2322.en_US
dc.identifier.citedreferenceNunemaker CS, Straume M, DeFazio RA, Moenter SM. Gonadotropin‐releasing hormone neurons generate interacting rhythms in multiple time domains. Endocrinology 2003; 144: 823 – 831.en_US
dc.identifier.citedreferenceTerasawa E, Schanhofer WK, Keen KL, Luchansky L. Intracellular Ca(2+) oscillations in luteinizing hormone‐releasing hormone neurons derived from the embryonic olfactory placode of the rhesus monkey. J Neurosci 1999; 19: 5898 – 5909.en_US
dc.identifier.citedreferenceJasoni CL, Todman MG, Strumia MM, Herbison AE. Cell type‐specific expression of a genetically encoded calcium indicator reveals intrinsic calcium oscillations in adult gonadotropin‐releasing hormone neurons. J Neurosci 2007; 27: 860 – 867.en_US
dc.identifier.citedreferenceKarsch FJ, Malpaux B, Wayne NL, Robinson JE. Characteristics of the melatonin signal that provide the photoperiodic code for timing seasonal reproduction in the ewe. Reprod Nutr Dev 1988; 28: 459 – 472.en_US
dc.identifier.citedreferenceMoenter SM, Caraty A, Locatelli A, Karsch FJ. Pattern of gonadotropin‐releasing hormone (GnRH) secretion leading up to ovulation in the ewe: existence of a preovulatory GnRH surge. Endocrinology 1991; 129: 1175 – 1182.en_US
dc.identifier.citedreferenceKim U, McCormick DA. The functional influence of burst and tonic firing mode on synaptic interactions in the thalamus. J Neurosci 1998; 18: 9500 – 9516.en_US
dc.identifier.citedreferenceDutton A, Dyball RE. Phasic firing enhances vasopressin release from the rat neurohypophysis. J Physiol 1979; 290: 433 – 440.en_US
dc.identifier.citedreferenceAbe H, Terasawa E. Firing pattern and rapid modulation of activity by estrogen in primate luteinizing hormone releasing hormone‐1 neurons. Endocrinology 2005; 146: 4312 – 4320.en_US
dc.identifier.citedreferenceCoombes S, Bressloff PC eds. Bursting: The Genesis of Rhythm in the Nervous System. Singapore: World Scientific Publishing Co, Ltd, 2005.en_US
dc.identifier.citedreferenceFrazier WT, Kandel ER, Kupfermann I, Waziri R, Coggeshall RE. Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica. J Neurophysiol 1967; 30: 1288 – 1351.en_US
dc.identifier.citedreferenceJunge D, Stephens CL. Cyclic variation of potassium conductance in a burst‐generating neurone in Aplysia. J Physiol 1973; 235: 155 – 181.en_US
dc.identifier.citedreferenceMathieu PA, Roberge FA. Characteristics of pacemaker oscillations in Aplysia neurons. Can J Physiol Pharmacol 1971; 49: 787 – 795.en_US
dc.identifier.citedreferenceBertram R, Butte MJ, Kiemel T, Sherman A. Topological and phenomenological classification of bursting oscillations. Bull Math Biol 1995; 57: 413 – 439.en_US
dc.identifier.citedreferencePlant RE. Bifurcation and resonance in a model for bursting nerve cells. J Math Biol 1981; 11: 15 – 32.en_US
dc.identifier.citedreferenceChristian CA, Moenter SM. The neurobiology of preovulatory and estradiol‐induced gonadotropin‐releasing hormone surges. Endocr Rev 2010; 31: 544 – 577.en_US
dc.identifier.citedreferenceOakley AE, Clifton DK, Steiner RA. Kisspeptin signaling in the brain. Endocr Rev 2009; 30: 713 – 743.en_US
dc.identifier.citedreferencePielecka‐Fortuna J, Chu Z, Moenter SM. Kisspeptin acts directly and indirectly to increase gonadotropin‐releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology 2008; 149: 1979 – 1986.en_US
dc.identifier.citedreferenceSuter KJ, Song WJ, Sampson TL, Wuarin JP, Saunders JT, Dudek FE, Moenter SM. Genetic targeting of green fluorescent protein to gonadotropin‐releasing hormone neurons: characterization of whole‐cell electrophysiological properties and morphology. Endocrinology 2000; 141: 412 – 419.en_US
dc.identifier.citedreferenceNunemaker CS, DeFazio RA, Moenter SM. Estradiol‐sensitive afferents modulate long‐term episodic firing patterns of GnRH neurons. Endocrinology 2002; 143: 2284 – 2292.en_US
dc.identifier.citedreferenceChu Z, Moenter SM. Endogenous activation of metabotropic glutamate receptors modulates GABAergic transmission to gonadotropin‐releasing hormone neurons and alters their firing rate: a possible local feedback circuit. J Neurosci 2005; 25: 5740 – 5749.en_US
dc.identifier.citedreferencePaxinos G, Franklin K. The Mouse Brain in Stereotaxic Coordinates, 2nd edn. New York, NY: Academic Press, 2001.en_US
dc.identifier.citedreferenceBarry PH. JPCalc, a software package for calculating liquid junction potential corrections in patch‐clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J Neurosci Meth 1994; 51: 107 – 116.en_US
dc.identifier.citedreferenceProssnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ. Estrogen signaling through the transmembrane G protein‐coupled receptor GPR30. Ann Rev Physiol 2008; 70: 165 – 190.en_US
dc.identifier.citedreferenceTomaiuolo M, Tabak J, Bertram R. Correlation analysis a tool for comparing relaxation‐type models to experimental data. Methods Enzymol 2009; 467: 1 – 22.en_US
dc.identifier.citedreferenceErmentrout B. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2002.en_US
dc.identifier.citedreferenceChu Z, Takagi H, Moenter SM. Hyperpolarization‐activated currents in gonadotropin‐releasing hormone (GnRH) neurons contribute to intrinsic excitability and are regulated by gonadal steroid feedback. J Neurosci 2010; 30: 13373 – 13383.en_US
dc.identifier.citedreferenceSuter KJ, Wuarin JP, Smith BN, Dudek FE, Moenter SM. Whole‐cell recordings from preoptic/hypothalamic slices reveal burst firing in gonadotropin‐releasing hormone neurons identified with green fluorescent protein in transgenic mice. Endocrinology 2000; 141: 3731 – 3736.en_US
dc.identifier.citedreferenceCharles AC, Hales TG. Mechanisms of spontaneous calcium oscillations and action potentials in immortalized hypothalamic (GT1‐7) neurons. J Neurophysiol 1995; 73: 56 – 64.en_US
dc.identifier.citedreferenceLee K, Duan W, Sneyd J, Herbison AE. Two slow calcium‐activated afterhyperpolarization currents control burst firing dynamics in gonadotropin‐releasing hormone neurons. J Neurosci 2010; 30: 6214 – 6224.en_US
dc.identifier.citedreferenceNunemaker CS, DeFazio RA, Moenter SM. A targeted extracellular approach for recording long‐term firing patterns of excitable cells: a practical guide. Biol Proc Online 2003; 5: 53 – 62.en_US
dc.identifier.citedreferencePielecka J, Moenter SM. Effect of steroid milieu on gonadotropin‐releasing hormone‐1 neuron firing pattern and luteinizing hormone levels in male mice. Biol Reprod 2006; 74: 931 – 937.en_US
dc.identifier.citedreferencePielecka J, Quaynor SD, Moenter SM. Androgens increase gonadotropin‐releasing hormone neuron firing activity in females and interfere with progesterone negative feedback. Endocrinology 2006; 147: 1474 – 1479.en_US
dc.identifier.citedreferenceRinzel J, Lee YS. Dissection of a model for neuronal parabolic bursting. J Math Biol 1987; 25: 653 – 675.en_US
dc.identifier.citedreferenceBertram R. Reduced‐system analysis of the effects of serotonin on a molluscan burster neuron. Biol Cybern 1994; 70: 359 – 368.en_US
dc.identifier.citedreferenceLyons DJ, Horjales‐Araujo E, Broberger C. Synchronized network oscillations in rat tuberoinfundibular dopamine neurons: switch to tonic discharge by thyrotropin‐releasing hormone. Neuron 2010; 65: 217 – 229.en_US
dc.identifier.citedreferenceCampbell RE, Ducret E, Porteous R, Liu X, Herde MK, Wellerhaus K, Sonntag S, Willecke K, Herbison AE. Gap junctions between neuronal inputs but not gonadotropin‐releasing hormone neurons control estrous cycles in the mouse. Endocrinology 2011; 152: 2290 – 2301.en_US
dc.identifier.citedreferenceChu Z, Andrade J, Shupnik MA, Moenter SM. Differential regulation of gonadotropin‐releasing hormone neuron activity and membrane properties by acutely applied estradiol: dependence on dose and estrogen receptor subtype. J Neurosci 2009; 29: 5616 – 5627.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.