Show simple item record

DCE and DW‐MRI monitoring of vascular disruption following VEGF‐Trap treatment of a rat glioma model

dc.contributor.authorHoff, Benjamin A.en_US
dc.contributor.authorBhojani, Mahaveer S.en_US
dc.contributor.authorRudge, Johnen_US
dc.contributor.authorChenevert, Thomas L.en_US
dc.contributor.authorMeyer, Charles R.en_US
dc.contributor.authorGalbán, Stefanieen_US
dc.contributor.authorJohnson, Timothy D.en_US
dc.contributor.authorLeopold, Judith Sebolten_US
dc.contributor.authorRehemtulla, Alnawazen_US
dc.contributor.authorRoss, Brian D.en_US
dc.contributor.authorGalbán, Craig J.en_US
dc.date.accessioned2012-07-12T17:26:31Z
dc.date.available2013-09-03T15:38:28Zen_US
dc.date.issued2012-07en_US
dc.identifier.citationHoff, Benjamin A.; Bhojani, Mahaveer S.; Rudge, John; Chenevert, Thomas L.; Meyer, Charles R.; Galbán, Stefanie ; Johnson, Timothy D.; Leopold, Judith Sebolt; Rehemtulla, Alnawaz; Ross, Brian D.; Galbán, Craig J. (2012). "DCE and DWâ MRI monitoring of vascular disruption following VEGFâ Trap treatment of a rat glioma model." NMR in Biomedicine 25(7): 935-942. <http://hdl.handle.net/2027.42/92143>en_US
dc.identifier.issn0952-3480en_US
dc.identifier.issn1099-1492en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92143
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherHemodynamicsen_US
dc.subject.otherDiffusionen_US
dc.subject.otherPreclinicalen_US
dc.subject.otherDCE‐MRIen_US
dc.subject.otherGliomaen_US
dc.subject.otherVEGF‐Trapen_US
dc.subject.otherAnti‐Angiogenic Therapyen_US
dc.subject.otherDW‐MRIen_US
dc.titleDCE and DW‐MRI monitoring of vascular disruption following VEGF‐Trap treatment of a rat glioma modelen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22190279en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92143/1/nbm1814.pdf
dc.identifier.doi10.1002/nbm.1814en_US
dc.identifier.sourceNMR in Biomedicineen_US
dc.identifier.citedreferenceBatchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK. AZD2171, a pan‐VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007; 11 ( 1 ): 83 – 95.en_US
dc.identifier.citedreferenceFricke I, Mirza N, Dupont J, Lockhart C, Jackson A, Lee JH, Sosman JA, Gabrilovich DI. Vascular endothelial growth factor‐trap overcomes defects in dendritic cell differentiation but does not improve antigen‐specific immune responses. Clin. Cancer Res. 2007; 13 ( 16 ): 4840 – 4848.en_US
dc.identifier.citedreferenceHolash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS. VEGF‐Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. USA 2002; 99 ( 17 ): 11 393 – 11 398.en_US
dc.identifier.citedreferenceRudge JS, Holash J, Hylton D, Russell M, Jiang S, Leidich R, Papadopoulos N, Pyles EA, Torri A, Wiegand SJ, Thurston G, Stahl N, Yancopoulos GD. Inaugural Article: VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc. Natl Acad. Sci. USA 2007; 104 (47 ): 18 363 – 18 370.en_US
dc.identifier.citedreferenceKim ES, Serur A, Huang J, Manley CA, McCrudden KW, Frischer JS, Soffer SZ, Ring L, New T, Zabski S, Rudge JS, Holash J, Yancopoulos GD, Kandel JJ, Yamashiro DJ. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc. Natl Acad. Sci. USA 2002; 99 ( 17 ): 11 399 – 11 404.en_US
dc.identifier.citedreferenceBergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nature Rev. 2003; 3 ( 6 ): 401 – 410.en_US
dc.identifier.citedreferenceHanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100 ( 1 ): 57 – 70.en_US
dc.identifier.citedreferenceYankeelov TE, Gore JC. Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples. Curr. Med. Imaging Rev. 2009; 3 ( 2 ): 91 – 107.en_US
dc.identifier.citedreferenceKety SS. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev. 1951; 3 ( 1 ): 1 – 41.en_US
dc.identifier.citedreferenceKovar DA, Lewis M, Karczmar GS. A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. J. Magn. Reson. Imaging 1998; 8 ( 5 ): 1126 – 1134.en_US
dc.identifier.citedreferenceTofts PS. Modeling tracer kinetics in dynamic Gd‐DTPA MR imaging. J. Magn. Reson. Imaging 1997; 7 ( 1 ): 91 – 101.en_US
dc.identifier.citedreferenceChenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J. Natl Cancer Inst. 2000; 92 ( 24 ): 2029 – 2036.en_US
dc.identifier.citedreferenceChenevert TL, Sundgren PC, Ross BD. Diffusion imaging: insight to cell status and cytoarchitecture. Neuroimag. Clin. N. Am. 2006; 16 ( 4 ): 619 – 632, viii–ix.en_US
dc.identifier.citedreferenceGalban S, Brisset JC, Rehemtulla A, Chenevert TL, Ross BD, Galban CJ. Diffusion‐weighted MRI for assessment of early cancer treatment response. Curr. Pharm. Biotechnol. 2010; 11 ( 6 ): 701 – 708.en_US
dc.identifier.citedreferenceHamstra DA, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J. Clin. Oncol. 2007; 25 ( 26 ): 4104 – 4109.en_US
dc.identifier.citedreferenceEllingson BM, Malkin MG, Rand SD, Connelly JM, Quinsey C, LaViolette PS, Bedekar DP, Schmainda KM. Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J. Magn. Reson. Imaging 2010; 31 ( 3 ): 538 – 548.en_US
dc.identifier.citedreferenceMoffat BA, Hall DE, Stojanovska J, McConville PJ, Moody JB, Chenevert TL, Rehemtulla A, Ross BD. Diffusion imaging for evaluation of tumor therapies in preclinical animal models. Magn. Reson. Mater. Phy. 2004; 17 ( 3–6 ): 249 – 259.en_US
dc.identifier.citedreferenceRoss BD, Zhao YJ, Neal ER, Stegman LD, Ercolani M, Ben‐Yoseph O, Chenevert TL. Contributions of cell kill and posttreatment tumor growth rates to the repopulation of intracerebral 9L tumors after chemotherapy: an MRI study. Proc. Natl Acad. Sci. USA 1998; 95 ( 12 ): 7012 – 7017.en_US
dc.identifier.citedreferenceYankeelov TE, Rooney WD, Li X, Springer CS, Jr. Variation of the relaxographic “shutter‐speed” for transcytolemmal water exchange affects the CR bolus‐tracking curve shape. Magn. Reson. Med. 2003; 50 ( 6 ): 1151 – 1169.en_US
dc.identifier.citedreferenceBocci G, Man S, Green SK, Francia G, Ebos JM, du Manoir JM, Weinerman A, Emmenegger U, Ma L, Thorpe P, Davidoff A, Huber J, Hicklin DJ, Kerbel RS. Increased plasma vascular endothelial growth factor (VEGF) as a surrogate marker for optimal therapeutic dosing of VEGF receptor‐2 monoclonal antibodies. Cancer Res. 2004; 64 ( 18 ): 6616 – 6625.en_US
dc.identifier.citedreferenceChoi H, Charnsangavej C, de Castro Faria S, Tamm EP, Benjamin RS, Johnson MM, Macapinlac HA, Podoloff DA. CT evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment: a quantitative analysis correlated with FDG PET findings. Am. J. Roentgenol. 2004; 183 ( 6 ): 1619 – 1628.en_US
dc.identifier.citedreferenceJaffe CC. Measures of response: RECIST, WHO, and new alternatives. J. Clin. Oncol. 2006; 24 ( 20 ): 3245 – 3251.en_US
dc.identifier.citedreferenceStrumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Tewes M, Faghih M, Brendel E, Voliotis D, Haase CG, Schwartz B, Awada A, Voigtmann R, Scheulen ME, Seeber S. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43–9006 in patients with advanced refractory solid tumors. J. Clin. Oncol. 2005; 23 ( 5 ): 965 – 972.en_US
dc.identifier.citedreferenceHamstra DA, Galban CJ, Meyer CR, Johnson TD, Sundgren PC, Tsien C, Lawrence TS, Junck L, Ross DJ, Rehemtulla A, Ross BD, Chenevert TL. Functional diffusion map as an early imaging biomarker for high‐grade glioma: correlation with conventional radiologic response and overall survival. J. Clin. Oncol. 2008; 26 ( 20 ): 3387 – 3394.en_US
dc.identifier.citedreferenceSorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang M, Jennings D, Wen PY, Lahdenranta J, Ancukiewicz M, di Tomaso E, Duda DG, Jain RK. A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 2009; 69 ( 13 ): 5296 – 5300.en_US
dc.identifier.citedreferenceWachsberger PR, Burd R, Cardi C, Thakur M, Daskalakis C, Holash J, Yancopoulos GD, Dicker AP. VEGF trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int. J. Rad. Oncol. 2007; 67 ( 5 ): 1526 – 1537.en_US
dc.identifier.citedreferenceGomez‐Manzano C, Holash J, Fueyo J, Xu J, Conrad CA, Aldape KD, de Groot JF, Bekele BN, Yung WK. VEGF Trap induces antiglioma effect at different stages of disease. Neuro‐Oncology 2008; 10 ( 6 ): 940 – 945.en_US
dc.identifier.citedreferenceKunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, Westphal M, Lamszus K. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor‐2. Cancer Res. 2001; 61 ( 18 ): 6624 – 6628.en_US
dc.identifier.citedreferenceRubenstein JL, Kim J, Ozawa T, Zhang M, Westphal M, Deen DF, Shuman MA. Anti‐VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2000; 2 ( 4 ): 306 – 314.en_US
dc.identifier.citedreferenceErber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte‐mediated endothelial cell survival mechanisms. J. Fed. Am. Society Exp. Biol 2004; 18 ( 2 ): 338 – 340.en_US
dc.identifier.citedreferenceDrappatz J, Lee EQ, Hammond S, Grimm SA, Norden AD, Beroukhim R, Gerard M, Schiff D, Chi AS, Batchelor TT, Doherty LM, Ciampa AS, Lafrankie DC, Ruland S, Snodgrass SM, Raizer JJ, Wen PY. Phase I study of panobinostat in combination with bevacizumab for recurrent high‐grade glioma. J. Neurooncol. 2011. DOI: 10.1007/s11060‐011‐0717‐zen_US
dc.identifier.citedreferenceVredenburgh JJ, Desjardins A, Reardon DA, Peters KB, Herndon JE, 2nd, Marcello J, Kirkpatrick JP, Sampson JH, Bailey L, Threatt S, Friedman AH, Bigner DD, Friedman HS. The addition of bevacizumab to standard radiation therapy and temozolomide followed by bevacizumab, temozolomide, and irinotecan for newly diagnosed glioblastoma. Clin. Cancer Res. 2011; 17 ( 12 ): 4119 – 4124.en_US
dc.identifier.citedreferenceZhang W, Fulci G, Buhrman JS, Stemmer‐Rachamimov AO, Chen JW, Wojtkiewicz GR, Weissleder R, Rabkin SD, Martuza RL. Bevacizumab with angiostatin‐armed oHSV increases antiangiogenesis and decreases Bevacizumab‐induced invasion in U87 glioma. Mol. Ther. 2011. DOI: 10.1038/mt.2011.187en_US
dc.identifier.citedreferenceStupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005; 352 ( 10 ): 987 – 996.en_US
dc.identifier.citedreferenceThaker NG, Pollack IF. Molecularly targeted therapies for malignant glioma: rationale for combinatorial strategies. Expert. Rev. Neurother. 2009; 9 ( 12 ): 1815 – 1836.en_US
dc.identifier.citedreferenceYamanaka R, Saya H. Molecularly targeted therapies for glioma. Ann. Neurol. 2009; 66 ( 6 ): 717 – 729.en_US
dc.identifier.citedreferenceFerrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005; 438 ( 7070 ): 967 – 974.en_US
dc.identifier.citedreferenceGasparini G, Longo R, Toi M, Ferrara N. Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat. Clin. Pract. Oncol. 2005; 2 ( 11 ): 562 – 577.en_US
dc.identifier.citedreferenceRaizer JJ, Grimm S, Chamberlain MC, Nicholas MK, Chandler JP, Muro K, Dubner S, Rademaker AW, Renfrow J, Bredel M. A phase 2 trial of single‐agent bevacizumab given in an every‐3‐week schedule for patients with recurrent high‐grade gliomas. Cancer 2010; 116 ( 22 ): 5297 – 5305.en_US
dc.identifier.citedreferenceSchmidt NO, Westphal M, Hagel C, Ergun S, Stavrou D, Rosen EM, Lamszus K. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int. J. Cancer 1999; 84 ( 1 ): 10 – 18.en_US
dc.identifier.citedreferenceBauerle T, Bartling S, Berger M, Schmitt‐Graff A, Hilbig H, Kauczor HU, Delorme S, Kiessling F. Imaging anti‐angiogenic treatment response with DCE‐VCT, DCE‐MRI and DWI in an animal model of breast cancer bone metastasis. Eur. J. Radiol. 2010; 73 ( 2 ): 280 – 287.en_US
dc.identifier.citedreferenceByrne AT, Ross L, Holash J, Nakanishi M, Hu L, Hofmann JI, Yancopoulos GD, Jaffe RB. Vascular endothelial growth factor‐trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin. Cancer Res. 2003; 9 ( 15 ): 5721 – 5728.en_US
dc.identifier.citedreferenceInai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu‐Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, McDonald DM. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am. J. Pathol. 2004; 165 ( 1 ): 35 – 52.en_US
dc.identifier.citedreferenceKadenhe‐Chiweshe A, Papa J, McCrudden KW, Frischer J, Bae JO, Huang J, Fisher J, Lefkowitch JH, Feirt N, Rudge J, Holash J, Yancopoulos GD, Kandel JJ, Yamashiro DJ. Sustained VEGF blockade results in microenvironmental sequestration of VEGF by tumors and persistent VEGF receptor‐2 activation. Mol. Cancer Res. 2008; 6 ( 1 ): 1 – 9.en_US
dc.identifier.citedreferenceMaxwell RJ, Wilson J, Prise VE, Vojnovic B, Rustin GJ, Lodge MA, Tozer GM. Evaluation of the anti‐vascular effects of combretastatin in rodent tumours by dynamic contrast enhanced MRI. NMR Biomed. 2002; 15 ( 2 ): 89 – 98.en_US
dc.identifier.citedreferenceRaatschen HJ, Simon GH, Fu Y, Sennino B, Shames DM, Wendland MF, McDonald DM, Brasch RC. Vascular permeability during antiangiogenesis treatment: MR imaging assay results as biomarker for subsequent tumor growth in rats. Radiology 2008; 247 ( 2 ): 391 – 399.en_US
dc.identifier.citedreferenceRiely GJ, Miller VA. Vascular endothelial growth factor trap in non small cell lung cancer. Clin. Cancer Res. 2007; 13 ( 15 Pt 2 ): s4623 – s4627.en_US
dc.identifier.citedreferenceHuang J, Frischer JS, Serur A, Kadenhe A, Yokoi A, McCrudden KW, New T, O'Toole K, Zabski S, Rudge JS, Holash J, Yancopoulos GD, Yamashiro DJ, Kandel JJ. Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc. Natl Acad. Sci. USA 2003; 100 ( 13 ): 7785 – 7790.en_US
dc.identifier.citedreferenceBaffert F, Le T, Sennino B, Thurston G, Kuo CJ, Hu‐Lowe D, McDonald DM. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am. J. Physiol. 2006; 290 ( 2 ): H547 – H559.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.