Three‐dimensional polycaprolactone scaffold‐conjugated bone morphogenetic protein‐2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification
dc.contributor.author | Jeong, Claire G. | en_US |
dc.contributor.author | Zhang, Huina | en_US |
dc.contributor.author | Hollister, Scott J. | en_US |
dc.date.accessioned | 2012-07-12T17:26:32Z | |
dc.date.available | 2013-10-01T17:06:32Z | en_US |
dc.date.issued | 2012-08 | en_US |
dc.identifier.citation | Jeong, Claire G.; Zhang, Huina; Hollister, Scott J. (2012). "Three‐dimensional polycaprolactone scaffold‐conjugated bone morphogenetic protein‐2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification ." Journal of Biomedical Materials Research Part A 100A(8): 2088-2096. <http://hdl.handle.net/2027.42/92144> | en_US |
dc.identifier.issn | 1549-3296 | en_US |
dc.identifier.issn | 1552-4965 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/92144 | |
dc.description.abstract | As articular cartilage is avascular, and mature chondrocytes do not proliferate, cartilage lesions have a limited capacity for regeneration after severe damage. The treatment of such damage has been challenging due to the limited availability of autologous healthy cartilage and lengthy and expensive cell isolation and expansion procedures. Hence, the use of bone morphogenetic protein‐2 (BMP‐2), a potent regulator of chondrogenic expression, has received considerable attention in cartilage and osteochondral tissue engineering. However, the exact role of BMP‐2 in cartilage repair has been postulated to promote both cartilage formation and subsequent cartilage degradation through hypertrophy and endochondral ossification. Furthermore, it is likely that the manner in which BMP‐2 is presented to chondrocytes will influence the physiologic pathway (repair vs. degeneration). This study investigates the relative influence of BMP‐2 on cartilage matrix and potential subsequent bone matrix production using primary chondrocytes seeded on designed 3D polycaprolactone (PCL) scaffolds with chemically conjugated BMP‐2. The results show that chemically conjugated BMP‐2 PCL scaffolds can promote significantly greater cartilage regeneration from seeded chondrocytes both in vitro and in vivo compared with untreated scaffolds. Furthermore, our results demonstrate that the conjugated BMP‐2 does not particularly accelerate endochondral ossification even in a readily permissible and highly vascular in vivo environment compared with untreated PCL scaffolds. This study not only reveals the potential use of the BMP‐2 conjugation delivery method for enhanced cartilage tissue formation but also gives new insights for the effects of conjugated BMP‐2 on cartilage regeneration and osteochondral ossification. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012. | en_US |
dc.publisher | Wiley Subscription Services, Inc., A Wiley Company | en_US |
dc.subject.other | Cartilage Regeneration | en_US |
dc.subject.other | Primary Chondrocytes | en_US |
dc.subject.other | 3D Polycaprolactone Scaffold | en_US |
dc.subject.other | BMP‐2 Conjugation | en_US |
dc.subject.other | Endochondral Ossification | en_US |
dc.title | Three‐dimensional polycaprolactone scaffold‐conjugated bone morphogenetic protein‐2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Biomedical Engineering | en_US |
dc.subject.hlbtoplevel | Engineering | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2125 | en_US |
dc.contributor.affiliationum | Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2125 | en_US |
dc.contributor.affiliationum | Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2125 | en_US |
dc.contributor.affiliationum | Department of Surgery, The University of Michigan, Ann Arbor, Michigan 48109‐0329 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/92144/1/33249_ftp.pdf | |
dc.identifier.doi | 10.1002/jbm.a.33249 | en_US |
dc.identifier.source | Journal of Biomedical Materials Research Part A | en_US |
dc.identifier.citedreference | Kim MK, Niyibizi C. Interaction of TGF‐beta1 and rhBMP‐2 on human bone marrow stromal cells cultured in collagen gel matrix. Yonsei Med J 2001; 42: 338 – 344. | en_US |
dc.identifier.citedreference | Martin I, Jakob M, Schafer D, Dick W, Spagnoli G, Heberer M. Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthritis Cartilage 2001; 9: 112 – 118. | en_US |
dc.identifier.citedreference | Krawczak DA, Westendorf JJ, Carlson CS, Lewis JL. Influence of bone morphogenetic protein‐2 on the extracellular matrix, material properties, and gene expression of long‐term articular chondrocyte cultures: Loss of chondrocyte stability. Tissue Eng Part A 2009; 15: 1247 – 1255. | en_US |
dc.identifier.citedreference | Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: Role in arthritis. Front Biosci 2006; 11: 529 – 543. | en_US |
dc.identifier.citedreference | Malemud CJ. Matrix metalloproteinases: Role in skeletal development and growth plate disorders. Front Biosci 2006; 11: 1702 – 1715. | en_US |
dc.identifier.citedreference | Cawston TE, Wilson AJ. Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pract Res Clin Rheumatol 2006; 20: 983 – 1002. | en_US |
dc.identifier.citedreference | Grunder T, Gaissmaier C, Fritz J, Stoop R, Hortschansky P, Mollenhauer J, Aicher WK. Bone morphogenetic protein (BMP)‐2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartilage 2004; 12: 559 – 567. | en_US |
dc.identifier.citedreference | Tsuyama K, Takaoka K, Kitamura Y, Ono K. Origin of the marrow cells in bones induced by implantation of osteosarcoma‐derived bone‐inducing factor in mice. Clin Orthop Relat Res 1983: 251 – 256. | en_US |
dc.identifier.citedreference | Oliveira SM, Amaral IF, Barbosa MA, Teixeira CC. Engineering endochondral bone: In vitro studies. Tissue Eng Part A 2009; 15: 625 – 634. | en_US |
dc.identifier.citedreference | Oliveira SM, Mijares DQ, Turner G, Amaral IF, Barbosa MA, Teixeira CC. Engineering endochondral bone: In vivo studies. Tissue Eng Part A 2009; 15: 635 – 643. | en_US |
dc.identifier.citedreference | Liu K, Zhou GD, Liu W, Zhang WJ, Cui L, Liu X, Liu TY, Cao Y. The dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro. Biomaterials 2008; 29: 2183 – 2192. | en_US |
dc.identifier.citedreference | Toh WS, Liu H, Heng BC, Rufaihah AJ, Ye CP, Cao T. Combined effects of TGFbeta1 and BMP2 in serum‐free chondrogenic differentiation of mesenchymal stem cells induced hyaline‐like cartilage formation. Growth Factors 2005; 23: 313 – 321. | en_US |
dc.identifier.citedreference | Hanada K, Solchaga LA, Caplan AI, Hering TM, Goldberg VM, Yoo JU, Johnstone B. BMP‐2 induction and TGF‐beta 1 modulation of rat periosteal cell chondrogenesis. J Cell Biochem 2001; 81: 284 – 294. | en_US |
dc.identifier.citedreference | van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB. Differential effects of local application of BMP‐2 or TGF‐beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage 1998; 6: 306 – 317. | en_US |
dc.identifier.citedreference | Liu X, Sun H, Yan D, Zhang L, Lv X, Liu T, Zhang W, Liu W, Cao Y, Zhou G. In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials 2010; 31: 9406 – 9414. | en_US |
dc.identifier.citedreference | Majumdar MK, Chockalingam PS, Bhat RA, Sheldon R, Keohan C, Blanchet T, Glasson S, Morris EA. Immortalized mouse articular cartilage cell lines retain chondrocyte phenotype and respond to both anabolic factor BMP‐2 and pro‐inflammatory factor IL‐1. J Cell Physiol 2008; 215: 68 – 76. | en_US |
dc.identifier.citedreference | Liao E, Yaszemski M, Krebsbach P, Hollister S. Tissue‐engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. Tissue Eng 2007; 13: 537 – 550. | en_US |
dc.identifier.citedreference | Jeong CG, Hollister SJ. Mechanical and biochemical assessments of three‐dimensional poly(1,8‐octanediol‐co‐citrate) scaffold pore shape and permeability effects on in vitro chondrogenesis using primary chondrocytes. Tissue Eng Part A 2010; 16: 3759 – 3768. | en_US |
dc.identifier.citedreference | Jeong CG, Hollister SJ. A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials 2010; 31: 4304 – 4312. | en_US |
dc.identifier.citedreference | Jeong CG, Zhang H, Hollister SJ. Three‐dimensional poly(1,8‐octanediol‐co‐citrate) scaffold pore shape and permeability effects on sub‐cutaneous in vivo chondrogenesis using primary chondrocytes. Acta Biomater 2011; 7: 505 – 514. | en_US |
dc.identifier.citedreference | Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochem Biophys Acta 1986; 883: 173 – 177. | en_US |
dc.identifier.citedreference | Chandrasekhar S, Esterman MA, Hoffman HA. Microdetermination of proteoglycans and glycosaminoglycans in the presence of guanidine hydrochloride. Anal Biochem 1987; 161: 103 – 108. | en_US |
dc.identifier.citedreference | Kim YJ, Sah RL, Doong JY, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 1988; 174: 168 – 176. | en_US |
dc.identifier.citedreference | Jeong CG, Hollister SJ. Mechanical, permeability, and degradation properties of 3D designed poly(1,8 octanediol‐co‐citrate)(POC) scaffolds for soft tissue engineering. J Biomed Mater Res B Appl Biomater 2010; 93: 141 – 149. | en_US |
dc.identifier.citedreference | Saito E, Kang H, Taboas JM, Diggs A, Flanagan CL, Hollister SJ. Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications. J Mater Sci Mater Med 2010; 21: 2371 – 2383. | en_US |
dc.identifier.citedreference | Emans PJ, van Rhijn LW, Welting TJ, Cremers A, Wijnands N, Spaapen F, Voncken JW, Shastri VP. Autologous engineering of cartilage. Proc Natl Acad Sci U S A 2010; 107: 3418 – 3423. | en_US |
dc.identifier.citedreference | Oshin AO, Stewart MC. The role of bone morphogenetic proteins in articular cartilage development, homeostasis and repair. Vet Comp Orthop Traumatol 2007; 20: 151 – 158. | en_US |
dc.identifier.citedreference | Yoon BS, Lyons KM. Multiple functions of BMPs in chondrogenesis. J Cell Biochem 2004; 93: 93 – 103. | en_US |
dc.identifier.citedreference | Issack PS, DiCesare PE. Recent advances toward the clinical application of bone morphogenetic proteins in bone and cartilage repair. Am J Orthop (Belle Mead NJ) 2003; 32: 429 – 436. | en_US |
dc.identifier.citedreference | Kaps C, Bramlage C, Smolian H, Haisch A, Ungethum U, Burmester GR, Sittinger M, Gross G, Haupl T. Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis Rheum 2002; 46: 149 – 162. | en_US |
dc.identifier.citedreference | Nawata M, Wakitani S, Nakaya H, Tanigami A, Seki T, Nakamura Y, Saito N, Sano K, Hidaka E, Takaoka K. Use of bone morphogenetic protein 2 and diffusion chambers to engineer cartilage tissue for the repair of defects in articular cartilage. Arthritis Rheum 2005; 52: 155 – 163. | en_US |
dc.identifier.citedreference | van der Kraan PM, Davidson EN, van den Berg WB. Bone morphogenetic proteins and articular cartilage: To serve and protect or a wolf in sheep clothing's? Osteoarthritis Cartilage 2010; 18: 735 – 741. | en_US |
dc.identifier.citedreference | Claus S, Aubert‐Foucher E, Demoor M, Camuzeaux B, Paumier A, Piperno M, Damour O, Duterque‐Coquillaud M, Galera P, Mallein‐Gerin F. Chronic exposure of bone morphogenetic protein‐2 favors chondrogenic expression in human articular chondrocytes amplified in monolayer cultures. J Cell Biochem 2010; 111: 1642 – 1651. | en_US |
dc.identifier.citedreference | Brown KV, Li B, Guda T, Perrien DS, Guelcher S, Wenke JC. Improving bone formation in a rat femur segmental defect by controlling BMP‐2 release. Tissue Eng Part A 2011; 17: 1735 – 1746. | en_US |
dc.identifier.citedreference | Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP‐2. Adv Drug Deliv Rev 2003; 55: 1613 – 1629. | en_US |
dc.identifier.citedreference | Lee J, Choi WI, Tae G, Kim YH, Kang SS, Kim SE, Kim SH, Jung Y, Kim SH. Enhanced regeneration of the ligament‐bone interface using a poly( L ‐lactide‐co‐epsilon‐caprolactone) scaffold with local delivery of cells/BMP‐2 using a heparin‐based hydrogel. Acta Biomater 2011; 7: 244 – 257. | en_US |
dc.identifier.citedreference | Patterson J, Siew R, Herring SW, Lin AS, Guldberg R, Stayton PS. Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 2010; 31: 6772 – 6781. | en_US |
dc.identifier.citedreference | Lopiz‐Morales Y, Abarrategi A, Ramos V, Moreno‐Vicente C, Lopez‐Duran L, Lopez‐Lacomba JL, Marco F. In vivo comparison of the effects of RHBMP‐2 and RHBMP‐4 in osteochondral tissue regeneration. Eur Cell Mater 2010; 20: 367 – 378. | en_US |
dc.identifier.citedreference | Morisue H, Matsumoto M, Chiba K, Matsumoto H, Toyama Y, Aizawa M, Kanzawa N, Fujimi TJ, Uchida H, Okada I. A novel hydroxyapatite fiber mesh as a carrier for recombinant human bone morphogenetic protein‐2 enhances bone union in rat posterolateral fusion model. Spine (Phila Pa 1976) 2006; 31: 1194 – 1200. | en_US |
dc.identifier.citedreference | Gavenis K, Schneider U, Groll J, Schmidt‐Rohlfing B. BMP‐7‐loaded PGLA microspheres as a new delivery system for the cultivation of human chondrocytes in a collagen type I gel: The common nude mouse model. Int J Artif Organs 2010; 33: 45 – 53. | en_US |
dc.identifier.citedreference | Patel ZS, Yamamoto M, Ueda H, Tabata Y, Mikos AG. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein‐2. Acta Biomater 2008; 4: 1126 – 1138. | en_US |
dc.identifier.citedreference | Zhang H, Migneco F, Lin CY, Hollister SJ. Chemically‐conjugated bone morphogenetic protein‐2 on three‐dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells. Tissue Eng Part A 2010; 16: 3441 – 3448. | en_US |
dc.identifier.citedreference | Reddi AH. Morphogenesis and tissue engineering of bone and cartilage: Inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng 2000; 6: 351 – 359. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.