Show simple item record

Forecasting phenology: from species variability to community patterns

dc.contributor.authorDiez, Jeffrey M.en_US
dc.contributor.authorIbáñez, Inésen_US
dc.contributor.authorMiller‐rushing, Abraham J.en_US
dc.contributor.authorMazer, Susan J.en_US
dc.contributor.authorCrimmins, Theresa M.en_US
dc.contributor.authorCrimmins, Michael A.en_US
dc.contributor.authorBertelsen, C. Daviden_US
dc.contributor.authorInouye, David W.en_US
dc.date.accessioned2012-07-12T17:26:42Z
dc.date.available2013-08-01T14:04:39Zen_US
dc.date.issued2012-06en_US
dc.identifier.citationDiez, Jeffrey M.; Ibáñez, Inés ; Miller‐rushing, Abraham J. ; Mazer, Susan J.; Crimmins, Theresa M.; Crimmins, Michael A.; Bertelsen, C. David; Inouye, David W. (2012). "Forecasting phenology: from species variability to community patterns." Ecology Letters 15(6). <http://hdl.handle.net/2027.42/92151>en_US
dc.identifier.issn1461-023Xen_US
dc.identifier.issn1461-0248en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92151
dc.description.abstractShifts in species’ phenology in response to climate change have wide‐ranging consequences for ecological systems. However, significant variability in species’ responses, together with limited data, frustrates efforts to forecast the consequences of ongoing phenological changes. Herein, we use a case study of three North American plant communities to explore the implications of variability across levels of organisation (within and among species, and among communities) for forecasting responses to climate change. We show how despite significant variation among species in sensitivities to climate, comparable patterns emerge at the community level once regional climate drivers are accounted for. However, communities differ with respect to projected patterns of divergence and overlap among their species’ phenological distributions in response to climate change. These analyses and a review of hypotheses suggest how explicit consideration of spatial scale and levels of biological organisation may help to understand and forecast phenological responses to climate change.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherClimate Changeen_US
dc.subject.otherScalingen_US
dc.subject.otherPhenologyen_US
dc.subject.otherGothicen_US
dc.subject.otherConcorden_US
dc.subject.otherCommunityen_US
dc.subject.otherVariationen_US
dc.subject.otherTucsonen_US
dc.titleForecasting phenology: from species variability to community patternsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and the Environment, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Biology, University of Maryland, College Park, MD 20742‐4415, USAen_US
dc.contributor.affiliationotherRocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USAen_US
dc.contributor.affiliationotherSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USAen_US
dc.contributor.affiliationotherHerbarium, University of Arizona, PO Box 210036, University of Arizona, Tucson, AZ 85721‐0036, USAen_US
dc.contributor.affiliationotherDepartment of Soil, Water and Environmental Science, University of Arizona, PO Box 210038 Tucson, AZ 85721‐0038, USAen_US
dc.contributor.affiliationotherUSA National Phenology Network, Tucson, AZ 85721, USAen_US
dc.contributor.affiliationotherOffice of Arid Lands Studies, University of Arizona, Tucson, AZ 85721, USAen_US
dc.contributor.affiliationotherEcology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USAen_US
dc.contributor.affiliationotherNational Park Service, Schoodic Education and Research Center and Acadia National Park, Winter Harbor, ME 04693, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92151/1/j.1461-0248.2012.01765.x.pdf
dc.identifier.doi10.1111/j.1461-0248.2012.01765.xen_US
dc.identifier.sourceEcology Lettersen_US
dc.identifier.citedreferenceMenzel, A., Sparks, T., Estrella, N. & Roy, D. ( 2006b ). Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr., 15, 498 – 504.en_US
dc.identifier.citedreferenceAldridge, G., Inouye, D.W., Forrest, J., Barr, W.A. & Miller‐Rushing, A.J. ( 2011 ). Emergence of a mid‐season period of low floral resources in a montane meadow ecosystem associated with climate change. J. Ecol., 99, 905 – 913.en_US
dc.identifier.citedreferenceAllesina, S. & Pascual, M. ( 2009 ). Food web models: a plea for groups. Ecol. Lett., 12, 652 – 662.en_US
dc.identifier.citedreferenceAmasino, R. ( 2010 ). Seasonal and developmental timing of flowering. Plant J., 61, 1001 – 1013.en_US
dc.identifier.citedreferenceBadeck, F.W., Bondeau, A., Bottcher, K., Doktor, D., Lucht, W., Schaber, J. et al. ( 2004 ). Responses of spring phenology to climate change. New Phytol., 162, 295 – 309.en_US
dc.identifier.citedreferenceBarr, B. ( 2011 ). Available at: http://rmbl.info/rockymountainbiolab/con/con_bcc_data.html. Last accessed 5 May 2010.en_US
dc.identifier.citedreferenceBartomeusa, I., Ascher, J.S., Wagner, D., Danforth, B.N., Colla, S., Kornbluth, S. et al. ( 2012 ). Climate‐associated phenological advances in bee pollinators and bee‐pollinated plants. Proc. Nat. Acad. Sci. USA, 108, 20645 – 20649.en_US
dc.identifier.citedreferenceClark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., Foley, J.A. et al. ( 2001 ). Ecological forecasts: an emerging imperative. Science, 293, 657 – 660.en_US
dc.identifier.citedreferenceCleland, E.E., Chiariello, N.R., Loarie, S.R., Mooney, H.A. & Field, C.B. ( 2006 ). Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Nat. Acad. Sci. USA, 103, 13740 – 13744.en_US
dc.identifier.citedreferenceCleland, E., Chuine, I., Menzel, A., Mooney, H. & Schwartz, M. ( 2007 ). Shifting plant phenology in response to global change. Trends Ecol. Evol., 22, 357 – 365.en_US
dc.identifier.citedreferenceCrimmins, T., Crimmins, M., Bertelsen, D. & Balmat, J. ( 2008 ). Relationships between alpha diversity of plant species in bloom and climatic variables across an elevation gradient. Int. J. Biometeorol., 52, 353 – 366.en_US
dc.identifier.citedreferenceCrimmins, T.M., Crimmins, M.A. & Bertelsen, C.D. ( 2009 ). Flowering range changes across an elevation gradient in response to warming summer temperatures. Glob. Change Biol., 15, 1141 – 1152.en_US
dc.identifier.citedreferenceCrimmins, T.M., Crimmins, M.A. & Bertelsen, C.D. ( 2010 ). Complex responses to climate drivers in onset of spring flowering across a semi‐arid elevation gradient. J. Ecol., 98, 1042 – 1051.en_US
dc.identifier.citedreferenceFitter, A. & Fitter, R. ( 2002 ). Rapid changes in flowering time in British plants. Science, 296, 1689 – 1691.en_US
dc.identifier.citedreferenceForrest, J. & Miller‐Rushing, A.J. ( 2010 ). Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 3101 – 3112.en_US
dc.identifier.citedreferenceGilman, S.E., Urban, M.C., Tewksbury, J., Gilchrist, G.W. & Holt, R.D. ( 2010 ). A framework for community interactions under climate change. Trends Ecol. Evol., 25, 325 – 331.en_US
dc.identifier.citedreferenceGordo, O. & Sanz, J.J. ( 2009 ). Long‐term temporal changes of plant phenology in the Western Mediterranean. Glob. Change Biol., 15, 1930 – 1948.en_US
dc.identifier.citedreferenceHegland, S.J., Nielsen, A., Lazaro, A., Bjerknes, A.L. & Totland, O. ( 2009 ). How does climate warming affect plant–pollinator interactions? Ecol. Lett., 12, 184 – 195.en_US
dc.identifier.citedreferenceIbanez, I., Primack, R.B., Miller‐Rushing, A.J., Ellwood, E., Higuchi, H., Lee, S.D. et al. ( 2010 ). Forecasting phenology under global warming. Phil. Trans. R. Soc. B: Biol. Sci., 365, 3247 – 3260.en_US
dc.identifier.citedreferenceInouye, D.W. ( 2008 ). Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology, 89, 353 – 362.en_US
dc.identifier.citedreferenceKaiser‐Bunbury, C.N., Muff, S., Memmott, J., Müller, C.B. & Caflisch, A. ( 2010 ). The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett., 13, 442 – 452.en_US
dc.identifier.citedreferenceMemmott, J., Craze, P.G., Waser, N.M. & Price, M.V. ( 2007 ). Global warming and the disruption of plant–pollinator interactions. Ecol. Lett., 10, 710 – 717.en_US
dc.identifier.citedreferenceMenzel, A. & Fabian, P. ( 1999 ). Growing season extended in Europe. Nature, 397, 659 – 659.en_US
dc.identifier.citedreferenceMenzel, A., Sparks, T., Estrella, N., Koch, E., Aasa, A., Ahas, R. et al. ( 2006a ). European phenological response to climate change matches the warming pattern. Glob. Change Biol., 12, 1969 – 1976.en_US
dc.identifier.citedreferenceMiller‐Rushing, A.J. & Inouye, D.W. ( 2009 ). Variation in the impact of climate change on flowering phenology and abundance: an examination of two pairs of closely related wildflower species. Am. J. Bot., 96, 1821 – 1829.en_US
dc.identifier.citedreferenceMiller‐Rushing, A. & Primack, R. ( 2008 ). Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology, 89, 332 – 341.en_US
dc.identifier.citedreferenceMiller‐Rushing, A.J., Inouye, D.W. & Primack, R.B. ( 2008 ). How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. J. Ecol., 96, 1289 – 1296.en_US
dc.identifier.citedreferenceMiller‐Rushing, A., Høye, T., Inouye, D. & Post, E. ( 2010 ). The effects of phenological mismatches on demography. Phil. Trans. R. Soc B: Biol. Sci., 365, 3177.en_US
dc.identifier.citedreferenceNoy‐Meir, I. ( 1973 ). Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst., 4, 25 – 51.en_US
dc.identifier.citedreferenceParmesan, C. ( 2006 ). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst., 37, 637 – 669.en_US
dc.identifier.citedreferencePau, S., Wolkovich, E.M., Cook, B.I., Davies, T.J., Kraft, N.J.B., Bolmgren, K. et al. ( 2011 ). Predicting phenology by integrating ecology, evolution and climate science. Glob. Change Biol., 17, 3633 – 3643.en_US
dc.identifier.citedreferencePrimack, R.B., Ibanez, I., Higuchi, H., Lee, S.D., Miller‐Rushing, A.J., Wilson, A.M. et al. ( 2009 ). Spatial and interspecific variability in phenological responses to warming temperatures. Biol. Conserv., 142, 2569 – 2577.en_US
dc.identifier.citedreferenceRichardson, A., Andy Black, T., Ciais, P., Delbart, N., Friedl, M., Gobron, N. et al. ( 2010 ). Influence of spring and autumn phenological transitions on forest ecosystem productivity. Phil. Trans. R. Soc B: Biol. Sci., 365, 3227.en_US
dc.identifier.citedreferenceRoot, T.L., MacMynowski, D.P., Mastrandrea, M.D. & Schneider, S.H. ( 2005 ). Human‐modified temperatures induce species changes: joint attribution. Proc. Nat. Acad. Sci. USA, 102, 7465 – 7469.en_US
dc.identifier.citedreferenceRosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q.G., Casassa, G. et al. ( 2008 ). Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 353 – 358.en_US
dc.identifier.citedreferenceSchwartz, M.D. & Hanes, J.M. ( 2009 ). Continental‐scale phenology: warming and chilling. Int. J. Climatol., 30, 1595 – 1598.en_US
dc.identifier.citedreferenceSimpson, G.G. & Dean, C. ( 2002 ). Arabidopsis, the rosetta stone of flowering time? Science, 296, 285 – 289.en_US
dc.identifier.citedreferenceSparks, T.H. & Yates, T.J. ( 1997 ). The effect of spring temperature on the appearance dates of British butterflies 1883–1993. Ecography, 20, 368 – 374.en_US
dc.identifier.citedreferenceThomas, A., O’Hara, R.B., Ligges, U. & Sturtz, S. ( 2006 ). Making BUGS open. R News, 6, 12 – 17.en_US
dc.identifier.citedreferenceZhou, X.L., Harrington, R., Woiwod, I.P., Perry, J.N., Bale, J.S. & Clark, S.J. ( 1995 ). Effects of temperature on aphid phenology. Glob. Change Biol., 1, 303 – 313.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.