Show simple item record

Synthesis, Characterization, and Direct Intracellular Imaging of Ultrasmall and Uniform Glutathione‐Coated Gold Nanoparticles

dc.contributor.authorSousa, Alioscka A.en_US
dc.contributor.authorMorgan, Jeffrey T.en_US
dc.contributor.authorBrown, Patrick H.en_US
dc.contributor.authorAdams, Aprilen_US
dc.contributor.authorJayasekara, M. P. Sureshen_US
dc.contributor.authorZhang, Guofengen_US
dc.contributor.authorAckerson, Christopher J.en_US
dc.contributor.authorKruhlak, Michael J.en_US
dc.contributor.authorLeapman, Richard D.en_US
dc.date.accessioned2012-08-09T14:54:56Z
dc.date.available2013-09-03T15:38:27Zen_US
dc.date.issued2012-07-23en_US
dc.identifier.citationSousa, Alioscka A.; Morgan, Jeffrey T.; Brown, Patrick H.; Adams, April; Jayasekara, M. P. Suresh; Zhang, Guofeng; Ackerson, Christopher J.; Kruhlak, Michael J.; Leapman, Richard D. (2012). "Synthesis, Characterization, and Direct Intracellular Imaging of Ultrasmall and Uniform Glutathione‐Coated Gold Nanoparticles." Small 8(14): 2277-2286. <http://hdl.handle.net/2027.42/92372>en_US
dc.identifier.issn1613-6810en_US
dc.identifier.issn1613-6829en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92372
dc.description.abstractGold nanoparticles (AuNPs) with core sizes below 2 nm and compact ligand shells constitute versatile platforms for the development of novel reagents in nanomedicine. Due to their ultrasmall size, these AuNPs are especially attractive in applications requiring delivery to crowded intracellular spaces in the cytosol and nucleus. For eventual use in vivo, ultrasmall AuNPs should ideally be monodisperse, since small variations in size may affect how they interact with cells and how they behave in the body. Here we report the synthesis of ultrasmall, uniform 144‐atom AuNPs protected by p ‐mercaptobenzoic acid followed by ligand exchange with glutathione (GSH). Quantitative scanning transmission electron microscopy (STEM) reveals that the resulting GSH‐coated nanoparticles (Au(GSH)) have a uniform mass distribution with cores that contain 134 gold atoms on average. Particle size dispersity is analyzed by analytical ultracentrifugation, giving a narrow distribution of apparent hydrodynamic diameter of 4.0 ± 0.6 nm. To evaluate the nanoparticles’ intracellular fate, the cell‐penetrating peptide TAT is attached noncovalently to Au(GSH), which is confirmed by fluorescence quenching and isothermal titration calorimetry. HeLa cells are then incubated with both Au(GSH) and the Au(GSH)‐TAT complex, and imaged without silver enhancement of the AuNPs in unstained thin sections by STEM. This imaging approach enables unbiased detection and quantification of individual ultrasmall nanoparticles and aggregates in the cytoplasm and nucleus of the cells. The synthesis and characterization of an ultrasmall and uniform glutathione‐coated gold nanoparticle is reported. It is also shown that scanning transmission electron microscopy (STEM) enables the visualization and quantification of individual gold nanoparticles as well as small aggregates in the cytoplasm and nucleus of HeLa cells.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherCell‐Penetrating Peptidesen_US
dc.subject.otherGold Nanoparticlesen_US
dc.subject.otherNanomedicineen_US
dc.subject.otherCellular Uptakeen_US
dc.subject.otherSTEMen_US
dc.titleSynthesis, Characterization, and Direct Intracellular Imaging of Ultrasmall and Uniform Glutathione‐Coated Gold Nanoparticlesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherLaboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.en_US
dc.contributor.affiliationotherLaboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USAen_US
dc.contributor.affiliationotherBiomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USAen_US
dc.contributor.affiliationotherMolecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USAen_US
dc.contributor.affiliationotherDepartment of Chemistry, Colorado State University, Ft. Collins, CO 80523, USAen_US
dc.contributor.affiliationotherExperimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USAen_US
dc.identifier.pmid22517616en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92372/1/2277_ftp.pdf
dc.identifier.doi10.1002/smll.201200071en_US
dc.identifier.sourceSmallen_US
dc.identifier.citedreferenceZ. Wu, R. Jin, ACS Nano 2009, 3, 2036.en_US
dc.identifier.citedreferenceT. Wang, J. Bai, X. Jiang, G. U. Nienhaus, ACS Nano. 2012, 6, 1251.en_US
dc.identifier.citedreferenceZ. W. Wang, O. Toikkanen, F. Yin, Z. Y. Li, B. M. Quinn, R. E. Palmer, J. Am. Chem. Soc. 2010, 132, 2854.en_US
dc.identifier.citedreferenceN. P. Young, Z. Y. Li, Y. Chen, S. Palomba, M. D. Vece, R. E. Palmer, Phys. Rev. Lett. 2008, 101, 246103.en_US
dc.identifier.citedreferenceA. A. Sousa, M. Hohmann‐Marriott, M. A. Aronova, G. Zhang, R. D. Leapman, J. Struct. Biol. 2008, 162, 14.en_US
dc.identifier.citedreferenceL. D. Menard, S.‐P. Gao, H. Xu, R. D. Twesten, A. S. Harper, Y. Song, G. Wang, A. D. Douglas, J. C. Yang, A. I. Frenkel, R. G. Nuzzo, R. W. Murray, J. Phys. Chem. B 2006, 110, 12874.en_US
dc.identifier.citedreferenceJ. S. Wall, J. Struct. Biol. 1999, 127, 161.en_US
dc.identifier.citedreferenceM. Calabretta, J. A. Jamison, J. C. Falkner, Y. Liu, B. D. Yuhas, K. S. Matthews, V. L. Colvin, Nano Lett. 2005, 5, 963.en_US
dc.identifier.citedreferenceJ. B. Falabella, T. J. Cho, D. C. Ripple, V. A. Hackley, M. J. Tarlov, Langmuir 2010, 26, 12740.en_US
dc.identifier.citedreferenceJ. M. Zook, V. Rastogi, R. I. MacCuspie, A. M. Keene, J. Fagan, ACS Nano 2011, 5, 8070.en_US
dc.identifier.citedreferenceR. Sawant, V. Torchilin, Mol. BioSyst. 2009, 6, 628.en_US
dc.identifier.citedreferenceM. J. Hostetler, J. E. Wingate, C.‐J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. David Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, Neal D. Evans, R. W. Murray, Langmuir. 1998, 14, 17.en_US
dc.identifier.citedreferenceJ. F. Hainfeld, F. R. Furuya, J. Histochem. Cytochem. 1992, 40, 177.en_US
dc.identifier.citedreferenceM. Walter, M. Moseler, R. L. Whetten, H. Häkkinen, Chem. Sci. 2011, 2, 1583.en_US
dc.identifier.citedreferenceR. P. Carney, J. Y. Kim, H. Qian, R. Jin, H. Mehenni, F. Stellacci, O. M. Bakr, Nat. Commun. 2011, 2.en_US
dc.identifier.citedreferenceR. Guo, Y. Song, G. Wang, R. W. Murray, J. Am. Chem. Soc. 2005, 127, 2752.en_US
dc.identifier.citedreferenceT. G. Schaaff, R. L. Whetten, J. Phys. Chem. B 1999, 103, 9394.en_US
dc.identifier.citedreferenceP. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, R. D. Kornberg, Science 2007, 318, 430.en_US
dc.identifier.citedreferenceZ. Krpetic, S. Saleemi, I. A. Prior, V. See, R. Qureshi, M. Brust, ACS Nano 2011, 5, 5195.en_US
dc.identifier.citedreferenceC. C. Berry, Nanomedicine 2008, 3, 357.en_US
dc.identifier.citedreferenceJ. M. Fuente, C. C. Berry, Bioconj. Chem. 2005, 16, 1176.en_US
dc.identifier.citedreferenceJ. B. Delehanty, C. E. Bradburne, K. Boeneman, K. Susumu, D. Farrell, B. C. Mei, J. B. Blanco‐Canosa, G. Dawson, P. E. Dawson, H. Mattoussi, I. L. Medintz, Integr. Biol. 2010, 2, 265.en_US
dc.identifier.citedreferenceP. Nativo, I. A. Prior, M. Brust, ACS Nano 2008, 2, 1639.en_US
dc.identifier.citedreferenceM. Swierczewska, S. Lee, X. Chen, Phys. Chem. Chem. Phys. 2011, 13, 9929.en_US
dc.identifier.citedreferenceS. Chowdhury, Z. Wu, A. Jaquins‐Gerstl, S. Liu, A. Dembska, B. A. Armitage, R. Jin, L. A. Peteanu, J. Phys. Chem. C. 2011, 115, 20105.en_US
dc.identifier.citedreferenceP. P. H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, R. W. Murray, J. Chem. Phys. B. 2006, 110, 4637.en_US
dc.identifier.citedreferenceW. He, C. Kivork, S. Machinani, M. K. Morphew, A. M. Gail, D. B. Tesar, N. E. Tiangco, R. McIntosh, P. J. Bjorkman, J. Struct. Biol. 2007, 107, 103.en_US
dc.identifier.citedreferenceC. Brandenberger, M. J. Clift, D. Vanhecke, C. Mühlfeld, V. Stone, P. Gehr, B. Rothen‐Rutishauser, Particle and Fibre Toxicology. 2010, 7, 15.en_US
dc.identifier.citedreferenceC. J. Wingard, D. M. Walters, B. L. Cathey, S. C. Hilderbrand, P. Katwa, S. Lin, P. C. Ke, R. Podila, A. Rao, R. M. Lust, J. M. Brown, Nanotoxicology. 2010, 5, 531.en_US
dc.identifier.citedreferenceD. B. Peckys, N. d. Jonge, Nano Lett. 2011, 11, 1733.en_US
dc.identifier.citedreferenceA. Dubavik, E. Sezgin, V. Lesnyak, N. Gaponik, P. Schwille, A. Eychmuller, ACS Nano DOI: 10.1021/nn204930y.en_US
dc.identifier.citedreferenceN. d. Jonge, N. Poirier‐Demers, H. Demers, D. B. Peckys, D. Drouin, Ultramicroscopy. 2010, 110, 1114.en_US
dc.identifier.citedreferenceM. A. Aronova, A. A. Sousa, G. Zhang, M. J. Kruhlak, E. Lei, R. D. Leapman, Microsc. Microanal. 2009, 15, 920.en_US
dc.identifier.citedreferenceL. Gregori, J. F. Hainfeld, M. N. Simon, D. Goldgaber, J. Biol. Chem. 1997, 272, 58.en_US
dc.identifier.citedreferenceJ. C. Hernández‐Garrido, K. Yoshida, P. L. Gai, E. D. Boyes, C. H. Christensen, P. A. Midgley, Catalysis Today. 2011, 160, 165.en_US
dc.identifier.citedreferenceP. H. Brown, A. Balbo, P. Schuck, in Curr. Protoc. Immunol. Unit 18.15. 2008.en_US
dc.identifier.citedreferenceP. Schuck, Biophys. J. 2000, 78, 1606.en_US
dc.identifier.citedreferenceK. L. Planken, H. Cölfen, Nanoscale. 2010, 2, 1849.en_US
dc.identifier.citedreferenceX. Zhang, H. Chibli, R. Mielke, J. Nadeau, Bioconj. Chem. 2011, 22, 235.en_US
dc.identifier.citedreferenceJ. F. Hainfeld, D. N. Slatkin, T. M. Focella, H. M. Smilowitz, Br. J. Radiol. 2006, 79, 248.en_US
dc.identifier.citedreferenceA. Kumar, H. Ma, X. Zhang, K. Huang, S. Jin, J. Liu, T. Wei, W. Cao, G. Zou, X.‐J. Liang, Biomaterials. 2012, 33, 1180.en_US
dc.identifier.citedreferenceC. A. Simpson, A. C. Agrawal, A. Balinski, K. M. Harkness, D. E. Cliffel, ACS Nano 2011, 5, 3577.en_US
dc.identifier.citedreferenceE. Oh, J. B. Delehanty, K. E. Sapsford, K. Susumu, R. Goswami, J. B. Blanco‐Canosa, P. E. Dawson, J. Granek, M. Shoff, Q. Zhang, P. L. Goering, A. Huston, I. L. Medintz, ACS Nano. 2011, 5, 6434.en_US
dc.identifier.citedreferenceM. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc., Chem. Commun. 1994, 7, 801.en_US
dc.identifier.citedreferenceM. Walter, J. Akola, O. Lopez‐Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Grönbeck, H. Häkkinen, Proc. Natl. Acad. Sci. USA 2008, 105, 9157.en_US
dc.identifier.citedreferenceM. W. Heaven, A. Dass, P. S. White, K. M. Holt, R. W. Murray, J. Am. Chem. Soc. 2008, 130, 3754.en_US
dc.identifier.citedreferenceB. Duncan, C. Kim, V. M. Rotello, J. Controlled Release 2010, 148, 122.en_US
dc.identifier.citedreferenceS. Rana, A. Bajaj, R. Mout, V. M. Rotello, Adv. Drug Deliv. Rev. 2012, 64, 200.en_US
dc.identifier.citedreferenceC. Kim, S. S. Agasti, Z. Zhu, L. Isaacs, V. M. Rotello, Nat. Chem. 2010, 2, 962.en_US
dc.identifier.citedreferenceD. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, C. A. Mirkin, Angew. Chem. Int. Ed. 2010, 49, 3280.en_US
dc.identifier.citedreferenceE. Boisselier, D. Astruc, Chem. Soc. Rev. 2009, 38, 1759.en_US
dc.identifier.citedreferenceE. C. Dreaden, M. A. Mackey, X. Huang, B. Kangy, M. A. El‐Sayed, Chem. Soc. Rev. 2011, 40, 3391.en_US
dc.identifier.citedreferenceR. Levy, U. Shaheen, Y. Cesbron, V. See, Nano Rev. 2010, 1, 4889.en_US
dc.identifier.citedreferenceL. Y. T. Chou, K. Ming, W. C. W. Chan, Chem. Soc. Rev. 2011, 40, 233.en_US
dc.identifier.citedreferenceA. G. Tkachenko, H. Xie, Y. Liu, D. Coleman, J. Ryan, W. R. Glomm, M. K. Shipton, S. Franzen, D. L. Feldheim, Bioconj. Chem. 2004, 15, 482.en_US
dc.identifier.citedreferenceE. C. Cho, J. Xie, P. A. Wurm, Y. Xia, Nano Lett. 2009, 9, 1080.en_US
dc.identifier.citedreferenceT. Lund, M. F. Callaghan, P. Williams, M. Turmaine, C. Bachmann, T. Rademacher, I. M. Roitt, R. Bayford, Biomaterials 2011, 32, 9776.en_US
dc.identifier.citedreferenceW. Jiang, B. Y. S. Kim, J. T. Rutka, W. C. W. Chan, Nat. Nanotechnol. 2008, 3, 145.en_US
dc.identifier.citedreferenceA. Kumari, S. K. Yadav, Expert Opin. Drug Deliv. 2011, 8, 141.en_US
dc.identifier.citedreferenceD. B. Chithrani, Mol. Membr. Biol. 2010, 27, 199.en_US
dc.identifier.citedreferenceA. Verma, O. Uzun, Y. Hu, Y. Hu, H.‐S. Han, N. Watson, S. Chen, D. J. Irvine, F. Stellacci, Nat. Mater. 2008, 7, 588.en_US
dc.identifier.citedreferenceC. Zhou, M. Long, Y. Qin, X. Sun, J. Zheng, Angew. Chem. Int. Ed. 2011, 50, 3168.en_US
dc.identifier.citedreferenceC. J. Ackerson, P. D. Jadzinsky, J. Z. Sexton, D. A. Bushnell, R. D. Kornberg, Bioconj. Chem. 2010, 21, 214.en_US
dc.identifier.citedreferenceN. K. Chaki, Y. Negishi, H. Tsunoyama, Y. Shichibu, T. Tsukuda, J. Am. Chem. Soc. 2008, 130, 8608.en_US
dc.identifier.citedreferenceY. Negishi, K. Nobusada, T. Tsukuda, J. Am. Chem. Soc. 2005, 127, 5261.en_US
dc.identifier.citedreferenceY. Li, O. Zaluzhna, Y. J. Tong, Chem. Commun. 2011, 47, 6033.en_US
dc.identifier.citedreferenceH. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V. Frangioni, Nat. Biotechnol. 2007, 25, 1165.en_US
dc.identifier.citedreferenceE. E. Lees, M. J. Gunzburg, T.‐L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton, P. Mulvaney, Nano Lett. 2008, 8, 2883.en_US
dc.identifier.citedreferenceC. J. Ackerson, R. D. Powell, J. F. Hainfeld, in Cryo‐EM Part A Sample Preparation and Data Collection (Ed: G. Jensen ), Academic Press, San Diego CA, 2010,Ch. 9.en_US
dc.identifier.citedreferenceY. Levi‐Kalisman, P. D. Jadzinsky, N. Kalisman, H. Tsunoyama, T. Tsukuda, D. A. Bushnell, R. D. Kornberg, J. Am. Chem. Soc. 2011, 133, 2976.en_US
dc.identifier.citedreferenceM.‐C. Bowman, E. Ballard, C. J. Ackerson, D. L. Feldheim, D. M. Margolis, C. Melander, J. Am. Chem. Soc. 2008, 130, 6896.en_US
dc.identifier.citedreferenceM. J. Hostetler, A. C. Templeton, R. W. Murray, Langmuir 1999, 15, 3782.en_US
dc.identifier.citedreferenceA. E. Porter, T. P. J. Knowles, K. Muller, S. Meehan, E. McGuire, J. Skepper, M. E. Welland, C. M. Dobson, J. Mol. Biol. 2009, 392, 868.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.