Show simple item record

Phylloquinone (vitamin K 1 ) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1,4‐dihydroxy‐2‐naphthoyl‐coa

dc.contributor.authorWidhalm, Joshua R.en_US
dc.contributor.authorDucluzeau, Anne‐liseen_US
dc.contributor.authorBuller, Nicole E.en_US
dc.contributor.authorElowsky, Christian G.en_US
dc.contributor.authorOlsen, Laura J.en_US
dc.contributor.authorBasset, Gilles J. C.en_US
dc.date.accessioned2012-08-09T14:55:38Z
dc.date.available2013-09-03T15:38:27Zen_US
dc.date.issued2012-07en_US
dc.identifier.citationWidhalm, Joshua R.; Ducluzeau, Anne‐lise ; Buller, Nicole E.; Elowsky, Christian G.; Olsen, Laura J.; Basset, Gilles J. C. (2012). "Phylloquinone (vitamin K 1 ) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1,4â dihydroxyâ 2â naphthoylâ coa." The Plant Journal 71(2). <http://hdl.handle.net/2027.42/92396>en_US
dc.identifier.issn0960-7412en_US
dc.identifier.issn1365-313Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92396
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.subject.otherChloroplasten_US
dc.subject.otherArabidopsisen_US
dc.subject.otherSynechocystisen_US
dc.subject.otherPhylloquinoneen_US
dc.subject.otherPeroxisomeen_US
dc.subject.otherHotdog‐Folden_US
dc.titlePhylloquinone (vitamin K 1 ) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1,4‐dihydroxy‐2‐naphthoyl‐coaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherCenter for Plant Science Innovation, University of Nebraska‐Lincoln, Lincoln, NE 68588, USAen_US
dc.identifier.pmid22372525en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/1/TPJ_4972_sm_FigS3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/2/TPJ_4972_sm_TableS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/3/TPJ_4972_sm_FigS2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/4/TPJ_4972_sm_TableS4.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/5/TPJ_4972_sm_FigS6.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/6/j.1365-313X.2012.04972.x.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/7/TPJ_4972_sm_FigS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/8/TPJ_4972_sm_TableS3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/9/TPJ_4972_sm_FigS5.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/10/TPJ_4972_sm_TableS2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/11/TPJ_4972_sm_FigS4.pdf
dc.identifier.doi10.1111/j.1365-313X.2012.04972.xen_US
dc.identifier.sourceThe Plant Journalen_US
dc.identifier.citedreferenceReumann, S., Quan, S., Aung, K. et al. ( 2009 ) In‐depth proteome analysis of arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol. 150, 125 – 143.en_US
dc.identifier.citedreferenceHarrison‐Lowe, N. and Olsen, L.J. ( 2006 ) Isolation of glyoxysomes from pumpkin cotyledons. Curr Protoc Cell Biol. Chapter 3: Unit 3.19.en_US
dc.identifier.citedreferenceIkeda, Y., Komura, M., Watanabe, M., Minami, C., Koike, H., Itoh, S., Kashino, Y. and Satoh, K. ( 2008 ) Photosystem I complexes associated with fucoxanthin‐chlorophyll‐binding proteins from a marine centric diatom, chaetoceros gracilis. Biochim. Biophys. Acta. 1777, 351 – 361.en_US
dc.identifier.citedreferenceJiang, M., Chen, X., Guo, Z.F., Cao, Y., Chen, M. and Guo, Z. ( 2008 ) Identification and characterization of (1R,6R)‐2‐succinyl‐6‐hydroxy‐2,4‐cyclohexadiene‐1‐carboxylate synthase in the menaquinone biosynthesis of escherichia coli. Biochemistry, 47, 3426 – 3434.en_US
dc.identifier.citedreferenceKaiping, S., Soll, J. and Schultz, G. ( 1984 ) Site of methylation of 2‐phytyl‐1,4‐naphthoquinol in phylloquinone (vitamin K1) synthesis in spinach chloroplasts. Phytochemistry, 23, 89.en_US
dc.identifier.citedreferenceKaramoko, M., Cline, S., Redding, K., Ruiz, N. and Hamel, P.P. ( 2011 ) Lumen thiol oxidoreductase1, a disulfide bond‐forming catalyst, is required for the assembly of photosystem II in Arabidopsis. Plant Cell, 23, 4462 – 4475en_US
dc.identifier.citedreferenceKarimi, M., Inze, D. and Depicker, A. ( 2002 ) GATEWAY vectors for agrobacterium‐mediated plant transformation. Trends Plant Sci. 7, 193 – 195.en_US
dc.identifier.citedreferenceKim, H.U., van Oostende, C., Basset, G.J. and Browse, J. ( 2008 ) The AAE14 gene encodes the arabidopsis o‐succinylbenzoyl‐CoA ligase that is essential for phylloquinone synthesis and photosystem‐I function. Plant J. 54, 272 – 283.en_US
dc.identifier.citedreferenceLohmann, A., Schottler, M.A., Brehelin, C., Kessler, F., Bock, R., Cahoon, E.B. and Dormann, P. ( 2006 ) Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinone distribution, photosystem I abundance, and anthocyanin accumulation in the arabidopsis AtmenG mutant. J. Biol. Chem. 281, 40461 – 40472.en_US
dc.identifier.citedreferenceOostende, C., Widhalm, J.R. and Basset, G.J. ( 2008 ) Detection and quantification of vitamin K(1) quinol in leaf tissues. Phytochemistry, 69, 2457 – 2462.en_US
dc.identifier.citedreferenceReumann, S. ( 2004a ) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol. 135, 783 – 800.en_US
dc.identifier.citedreferenceReumann, S., Ma, C., Lemke, S. and Babujee, L. ( 2004b ) AraPerox. A database of putative arabidopsis proteins from plant peroxisomes. Plant Physiol. 136, 2587 – 2608.en_US
dc.identifier.citedreferenceReumann, S., Babujee, L., Ma, C., Wienkoop, S., Siemsen, T., Antonicelli, G.E., Rasche, N., Luder, F., Weckwerth, W. and Jahn, O. ( 2007 ) Proteome analysis of arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell, 19, 3170 – 3193.en_US
dc.identifier.citedreferenceSakuragi, Y. and Bryant, D.A. ( 2006 ) Genetic manipulation of quinone biosynthesis in cyanobacteria. In Advances in Photosynthesis and Respiration. Photosystem I: The light‐Driven Plastocyanin: Ferredoxin Oxidoreductase in Photosynthesis ( Golbeck, J.H., ed.). Dordrecht, The Netherlands: Springer, pp. 205 – 222.en_US
dc.identifier.citedreferenceSattler, S.E., Cahoon, E.B., Coughlan, S.J. and DellaPenna, D. ( 2003 ) Characterization of tocopherol cyclases from higher plants and cyanobacteria. evolutionary implications for tocopherol synthesis and function. Plant Physiol. 132, 2184 – 2195.en_US
dc.identifier.citedreferenceSchultz, G., Soll, J. and Ellerbrock, B.H. ( 1981 ) Site of prenylation reaction in synthesis of phylloquinone (vitamin K1) by spinach chloroplasts. Eur. J. Biochem. 117, 329 – 332.en_US
dc.identifier.citedreferenceSessions, A., Burke, E., Presting, G. et al. ( 2002 ) A high‐throughput arabidopsis reverse genetics system. Plant Cell, 14, 2985 – 2994.en_US
dc.identifier.citedreferenceShimada, H., Ohno, R., Shibata, M., Ikegami, I., Onai, K., Ohto, M.A. and Takamiya, K. ( 2005 ) Inactivation and deficiency of core proteins of photosystems I and II caused by genetical phylloquinone and plastoquinone deficiency but retained lamellar structure in a T‐DNA mutant of arabidopsis. Plant J. 41, 627 – 637.en_US
dc.identifier.citedreferenceSigfridsson, K., Hansson, O. and Brzezinski, P. ( 1995 ) Electrogenic light reactions in photosystem I: resolution of electron‐transfer rates between the iron‐sulfur centers. Proc. Natl Acad. Sci. USA, 92, 3458 – 3462.en_US
dc.identifier.citedreferenceSingh, A.K., Bhattacharyya‐Pakrasi, M. and Pakrasi, H.B. ( 2008 ) Identification of an atypical membrane protein involved in the formation of protein disulfide bonds in oxygenic photosynthetic organisms. J. Biol. Chem. 283, 15762 – 15770.en_US
dc.identifier.citedreferenceStrawn, M.A., Marr, S.K., Inoue, K., Inada, N., Zubieta, C. and Wildermuth, M.C. ( 2007 ) Arabidopsis isochorismate synthase functional in pathogen‐induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J. Biol. Chem. 282, 5919 – 5933.en_US
dc.identifier.citedreferenceThoden, J.B., Holden, H.M., Zhuang, Z. and Dunaway‐Mariano, D. ( 2002 ) X‐ray crystallographic analyses of inhibitor and substrate complexes of wild‐type and mutant 4‐hydroxybenzoyl‐CoA thioesterase. J. Biol. Chem. 277, 27468 – 27476.en_US
dc.identifier.citedreferenceWeigel, D. and Glazebrook, J. ( 2002 ) Arabidopsis: A laboratory manual. New York, USA: Cold Spring Harbor Laboratory Press.en_US
dc.identifier.citedreferenceWidhalm, J.R., van Oostende, C., Furt, F. and Basset, G.J. ( 2009 ) A dedicated thioesterase of the hotdog‐fold family is required for the biosynthesis of the naphthoquinone ring of vitamin K1. Proc. Natl Acad. Sci. USA, 106, 5599 – 5603.en_US
dc.identifier.citedreferenceWilliams, J.G.K. ( 1988 ) Construction of specific mutations in photosystem II photosynthetic reaction center by genetic enginerring methods in synechocystis 6803. Methods Enzymol. 167, 766 – 778.en_US
dc.identifier.citedreferenceYoshida, E., Nakamura, A. and Watanabe, T. ( 2003 ) Reversed‐phase HPLC determination of chlorophyll a’ and naphthoquinones in photosystem I of red algae: existence of two menaquinone‐4 molecules in photosystem I of cyanidium caldarium. Anal. Sci. 19, 1001 – 1005.en_US
dc.identifier.citedreferenceYu, G., Nguyen, T.T.H., Guo, Y. et al. ( 2010 ) Enzymatic functions of wild tomato methylketone synthases 1 and 2. Plant Physiol. 154, 67 – 77.en_US
dc.identifier.citedreferenceBabujee, L., Wurtz, V., Ma, C., Lueder, F., Soni, P., van Dorsselaer, A. and Reumann, S. ( 2010 ) The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. J. Exp. Bot. 61, 1441 – 1453.en_US
dc.identifier.citedreferenceBenning, M.M., Wesenberg, G., Liu, R., Taylor, K.L., Dunaway‐Mariano, D. and Holden, H.M. ( 1998 ) The three‐dimensional structure of 4‐hydroxybenzoyl‐CoA thioesterase from pseudomonas sp. strain CBS‐3. J. Biol. Chem. 273, 33572 – 33579.en_US
dc.identifier.citedreferenceBooth, S.L. ( 2009 ) Roles for vitamin K beyond coagulation. Annu. Rev. Nutr. 29, 89 – 110.en_US
dc.identifier.citedreferenceBooth, S.L. and Suttie, J.W. ( 1998 ) Dietary intake and adequacy of vitamin K. J. Nutr. 128, 785 – 788.en_US
dc.identifier.citedreferenceBrettel, K., Sétif, P. and Mathis, P. ( 1986 ) Flash‐induced absorption changes in photosystem I at low temperature: evidence that the electron acceptor A1 is vitamin K1. FEBS Lett. 203, 220 – 224.en_US
dc.identifier.citedreferenceCantu, D.C., Chen, Y. and Reilly, P.J. ( 2010 ) Thioesterases: a new perspective based on their primary and tertiary structures. Protein Sci. 19, 1281 – 1295.en_US
dc.identifier.citedreferenceCantu, D.C., Chen, Y., Lemons, M.L. and Reilly, P.J. ( 2011 ) ThYme: a database for thioester‐active enzymes. Nucleic Acids Res. 39, D342 – D346.en_US
dc.identifier.citedreferenceCline, K. ( 1986 ) Import of proteins into chloroplasts. membrane integration of a thylakoid precursor protein reconstituted in chloroplast lysates. J. Biol. Chem. 261, 14804 – 14810.en_US
dc.identifier.citedreferenceCollins, M.D. and Jones, D. ( 1981 ) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316 – 354.en_US
dc.identifier.citedreferenceDillon, S.C. and Bateman, A. ( 2004 ) The hotdog fold: wrapping up a superfamily of thioesterases and dehydratases. BMC Bioinformatics, 5, 109.en_US
dc.identifier.citedreferenceDouce, R., Bourguignon, J., Brouquisse, R. and Neuburger, M. ( 1987 ) Isolation of plant mitochondria: general principles and criteria of integrity. Methods Enzymol. 148, 403 – 415.en_US
dc.identifier.citedreferenceFinn, R.D., Mistry, J., Tate, J. et al. ( 2010 ) The pfam protein families database. Nucleic Acids Res. 38, D211 – D222.en_US
dc.identifier.citedreferenceForner, J. and Binder, S. ( 2007 ) The red fluorescent protein eqFP611: application in subcellular localization studies in higher plants. BMC Plant Biol. 7, 28.en_US
dc.identifier.citedreferenceFurt, F., Oostende, C., Widhalm, J.R., Dale, M.A., Wertz, J. and Basset, G.J. ( 2010 ) A bimodular oxidoreductase mediates the specific reduction of phylloquinone (vitamin K) in chloroplasts. Plant J. 64, 38 – 46.en_US
dc.identifier.citedreferenceGarcion, C., Lohmann, A., Lamodiére, E., Catinot, J., Buchala, A., Doermann, P. and Metraux, J.P. ( 2008 ) Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of arabidopsis. Plant Physiol. 147, 1279 – 1287.en_US
dc.identifier.citedreferenceGaudillière, J., d’Harlingue, A., Camara, B. and Monéger, R. ( 1984 ) Prenylation and methylation reactions in phylloquinone (vitamin K 1 ) synthesis in capsicum annuum plastids. Plant Cell Rep. 3, 240 – 242.en_US
dc.identifier.citedreferenceGross, J., Cho, W.K., Lezhneva, L., Falk, J., Krupinska, K., Shinozaki, K., Seki, M., Herrmann, R.G. and Meurer, J. ( 2006 ) A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes. J. Biol. Chem. 281, 17189 – 17196.en_US
dc.identifier.citedreferenceGross, J., Meurer, J. and Bhattacharya, D. ( 2008 ) Evidence of a chimeric genome in the cyanobacterial ancestor of plastids. BMC Evol. Biol. 8, 117.en_US
dc.identifier.citedreferenceHajdukiewicz, P., Svab, Z. and Maliga, P. ( 1994 ) The small, versatile pPZP family of agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989 – 994.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.