Show simple item record

DEK expression in Merkel cell carcinoma and small cell carcinoma

dc.contributor.authorPatel, Rajiv M.en_US
dc.contributor.authorWalters, Laura L.en_US
dc.contributor.authorKappes, Ferdinanden_US
dc.contributor.authorMehra, Rohiten_US
dc.contributor.authorFullen, Douglas R.en_US
dc.contributor.authorMarkovitz, David M.en_US
dc.contributor.authorMa, Lingleien_US
dc.date.accessioned2012-08-09T14:55:45Z
dc.date.available2013-10-01T17:06:31Zen_US
dc.date.issued2012-08en_US
dc.identifier.citationPatel, Rajiv M.; Walters, Laura L.; Kappes, Ferdinand; Mehra, Rohit; Fullen, Douglas R.; Markovitz, David M.; Ma, Linglei (2012). " DEK expression in Merkel cell carcinoma and small cell carcinoma." Journal of Cutaneous Pathology 39(8): 753-757. <http://hdl.handle.net/2027.42/92401>en_US
dc.identifier.issn0303-6987en_US
dc.identifier.issn1600-0560en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92401
dc.description.abstractBackground The chromatin architectural factor DEK maps to chromosome 6p and is frequently overexpressed in several neoplasms, including small cell lung carcinoma, where it is associated with poor prognosis, tumor initiation activity and chemoresistance. DEK expression has not been studied in cutaneous Merkel cell carcinoma. Methods We applied a DEK monoclonal antibody to 15 cases of Merkel cell carcinoma and 12 cases of small cell carcinoma. DEK nuclear immunoreactivity was scored based on percentage (0, negative; 1+, <25%; 2+, 25–50%; 3+, >50%) and intensity (weak, moderate or strong). Results All 15 Merkel cell carcinoma cases (100%) showed diffuse (3+) nuclear positivity (14 strong, 1 weak). Six of 12 small cell carcinoma cases (50%) showed diffuse (3+) and strong nuclear positivity, while one case exhibited focal (1+) weak nuclear positivity. The remaining five cases were negative for DEK expression. Conclusions Our results suggest that DEK may be involved in the pathogenesis of Merkel cell carcinoma and therefore may provide therapeutic implications for Merkel cell carcinomas. In addition, the difference in DEK expression between Merkel cell carcinoma and small cell carcinoma suggests possible separate tumorigenesis pathways for the two tumors.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMerkel Cell Carcinomaen_US
dc.subject.otherSmall Cell Carcinomaen_US
dc.subject.otherDEKen_US
dc.subject.otherNeuroendocrine Carcinomaen_US
dc.titleDEK expression in Merkel cell carcinoma and small cell carcinomaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelDermatologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22765016en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92401/1/cup1941.pdf
dc.identifier.doi10.1111/j.1600-0560.2012.01941.xen_US
dc.identifier.sourceJournal of Cutaneous Pathologyen_US
dc.identifier.citedreferenceKappes F, Khodadoust MS, Yu L, et al. DEK expression in melanocytic lesions. Hum Pathol 2011; 42: 932.en_US
dc.identifier.citedreferenceCarro MS, Spiga FM, Quarto M, et al. DEK expression is controlled by E2F and deregulated in diverse tumor types. Cell Cycle 2006; 5: 1202.en_US
dc.identifier.citedreferenceHan S, Xuan Y, Liu S, et al. Clinicopathological significance of DEK overexpression in serous ovarian tumors. Pathol Int 2009; 59: 443.en_US
dc.identifier.citedreferenceKondoh N, Wakatsuki T, Ryo A, et al. Identification and characterization of genes associated with human hepatocellular carcinogenesis. Cancer Res 1999; 59: 4990.en_US
dc.identifier.citedreferenceKroes RA, Jastrow A, McLone MG, et al. The identification of novel therapeutic targets for the treatment of malignant brain tumors. Cancer Lett 2000; 156: 191.en_US
dc.identifier.citedreferenceOrlic M, Spencer CE, Wang L, Gallie BL. Expression analysis of 6p22 genomic gain in retinoblastoma. Genes Chromosomes Cancer 2006; 45: 72.en_US
dc.identifier.citedreferenceSanchez‐Carbayo M, Socci ND, Lozano JJ, et al. Gene discovery in bladder cancer progression using cDNA microarrays. Am J Pathol 2003; 163: 505.en_US
dc.identifier.citedreferenceWu Q, Li Z, Lin H, Han L, Liu S, Lin   Z. DEK overexpression in uterine cervical cancers. Pathol Int 2008; 58: 378.en_US
dc.identifier.citedreferenceAllen PJ, Bowne WB, Jaques DP, Brennan MF, Busam K, Coit DG. Merkel cell carcinoma: prognosis and treatment of patients from a single institution. J Clin Oncol 2005; 23: 2300.en_US
dc.identifier.citedreferenceLemos B, Nghiem P. Merkel cell carcinoma: more deaths but still no pathway to blame. J Invest Dermatol 2007; 127: 2100.en_US
dc.identifier.citedreferenceHeath M, Jaimes N, Lemos B, et al. Clinical characteristics of Merkel cell carcinoma at diagnosis in 195 patients: the AEIOU features. J Am Acad Dermatol 2008; 58: 375.en_US
dc.identifier.citedreferenceSantos GC, Zielenska M, Prasad M, Squire JA. Chromosome 6p amplification and cancer progression. J Clin Pathol 2007; 60: 1.en_US
dc.identifier.citedreferenceGovindan R, Page N, Morgensztern D, et al. Changing epidemiology of small‐cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol 2006; 24: 4539.en_US
dc.identifier.citedreferenceNamiki T, Yanagawa S, Izumo T, et al. Genomic alterations in primary cutaneous melanomas detected by metaphase comparative genomic hybridization with laser capture or manual microdissection: 6p gains may predict poor outcome. Cancer Genet Cytogenet 2005; 157: 1.en_US
dc.identifier.citedreferenceHanly AJ, Elgart GW, Jorda M, Smith J, Nadji   M. Analysis of thyroid transcription factor‐1 and cytokeratin 20 separates Merkel cell carcinoma from small cell carcinoma of lung. J Cutan Pathol 2000; 27: 118.en_US
dc.identifier.citedreferenceKargi A, Gurel D, Tuna B. The diagnostic value of TTF‐1, CK 5/6, and p63 immunostaining in classification of lung carcinomas. Appl Immunohistochem Mol Morphol 2007; 15: 415.en_US
dc.identifier.citedreferenceAsioli S, Righi A, de Biase D, et al. Expression of p63 is the sole independent marker of aggressiveness in localised (stage I‐II) Merkel cell carcinomas. Mod Pathol 2011; 24: 1451.en_US
dc.identifier.citedreferenceWise‐Draper TM, Morreale RJ, Morris TA, et al. DEK proto‐oncogene expression interferes with the normal epithelial differentiation program. Am J Pathol 2009; 174: 71.en_US
dc.identifier.citedreferenceDuncavage EJ, Zehnbauer BA, Pfeifer JD. Prevalence of Merkel cell polyomavirus in Merkel cell carcinoma. Mod Pathol 2009; 22: 516.en_US
dc.identifier.citedreferenceFeng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008; 319: 1096.en_US
dc.identifier.citedreferenceGarneski KM, Warcola AH, Feng Q, Kiviat   NB, Leonard JH, Nghiem P. Merkel cell polyomavirus is more frequently present in North American than Australian Merkel cell carcinoma tumors. J Invest Dermatol 2009; 129: 246.en_US
dc.identifier.citedreferenceHouben R, Adam C, Baeurle A, et al. An intact retinoblastoma protein‐binding site in Merkel cell polyomavirus large T antigen is required for promoting growth of Merkel cell carcinoma cells. Int J Cancer 2012; 130: 847.en_US
dc.identifier.citedreferenceHelmbold P, Lahtz C, Herpel E, Schnabel PA, Dammann RH. Frequent hypermethylation of RASSF1A tumour suppressor gene promoter and presence of Merkel cell polyomavirus in small cell lung cancer. Eur J Cancer 2009; 45: 2207.en_US
dc.identifier.citedreferenceJung HS, Choi YL, Choi JS, et al. Detection of Merkel cell polyomavirus in Merkel cell carcinomas and small cell carcinomas by PCR and immunohistochemistry. Histol Histopathol 2011; 26: 1231.en_US
dc.identifier.citedreferenceWetzels CT, Hoefnagel JG, Bakkers JM, Dijkman HB, Blokx WA, Melchers WJ. Ultrastructural proof of polyomavirus in Merkel cell carcinoma tumour cells and its absence in small cell carcinoma of the lung. PLoS One 2009; 4: e4958.en_US
dc.identifier.citedreferenceKappes F, Burger K, Baack M, Fackelmayer FO, Gruss C. Subcellular localization of the human proto‐oncogene protein DEK. J Biol Chem 2001; 276: 26317.en_US
dc.identifier.citedreferenceGamble MJ, Fisher RP. SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat Struct Mol Biol 2007; 14: 548.en_US
dc.identifier.citedreferenceKhodadoust MS, Verhaegen M, Kappes   F, et al. Melanoma proliferation and chemoresistance controlled by the DEK oncogene. Cancer Res 2009; 69: 6405.en_US
dc.identifier.citedreferenceRiveiro‐Falkenbach E, Soengas MS. Control of tumorigenesis and chemoresistance by the DEK oncogene. Clin Cancer Res 2010; 16: 2932.en_US
dc.identifier.citedreferenceShibata T, Kokubu A, Miyamoto M, et al. DEK oncoprotein regulates transcriptional modifiers and sustains tumor initiation activity in high‐grade neuroendocrine carcinoma of the lung. Oncogene 2010; 29: 4671.en_US
dc.identifier.citedreferenceKappes F, Waldmann T, Mathew V, et al. The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity. Genes Dev 2011; 25: 673.en_US
dc.identifier.citedreferenceWise‐Draper TM, Allen HV, Thobe MN, et al. The human DEK proto‐oncogene is a senescence inhibitor and an upregulated target of high‐risk human papillomavirus E7. J Virol 2005; 79: 14309.en_US
dc.identifier.citedreferenceWise‐Draper TM, Mintz‐Cole RA, Morris TA, et al. Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo. Cancer Res 2009; 69: 1792.en_US
dc.identifier.citedreferencevon Lindern M, Fornerod M, van Baal S, et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia‐specific dek‐can mRNA. Mol Cell Biol 1992; 12: 1687.en_US
dc.identifier.citedreferenceFornerod M, Boer J, van Baal S, et al. Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia‐specific chromosome rearrangements. Oncogene 1995; 10: 1739.en_US
dc.identifier.citedreferenceAgeberg M, Drott K, Olofsson T, Gullberg   U, Lindmark A. Identification of a novel and myeloid specific role of the leukemia‐associated fusion protein DEK‐NUP214 leading to increased protein synthesis. Genes Chromosomes Cancer 2008; 47: 276.en_US
dc.identifier.citedreferenceAbba MC, Sun H, Hawkins KA, et al. Breast cancer molecular signatures as determined by SAGE: correlation with lymph node status. Mol Cancer Res 2007; 5: 881.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.