Show simple item record

Bone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1‐MMP

dc.contributor.authorKachgal, Surajen_US
dc.contributor.authorCarrion, Bitaen_US
dc.contributor.authorJanson, Isaac A.en_US
dc.contributor.authorPutnam, Andrew J.en_US
dc.date.accessioned2012-08-09T14:55:57Z
dc.date.available2014-01-07T14:51:08Zen_US
dc.date.issued2012-11en_US
dc.identifier.citationKachgal, Suraj; Carrion, Bita; Janson, Isaac A.; Putnam, Andrew J. (2012). "Bone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1‐MMP." Journal of Cellular Physiology 227(11): 3546-3555. <http://hdl.handle.net/2027.42/92409>en_US
dc.identifier.issn0021-9541en_US
dc.identifier.issn1097-4652en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92409
dc.description.abstractBone marrow‐derived stromal/stem cells (BMSCs) have recently been characterized as mediators of tissue regeneration after injury. In addition to preventing fibrosis at the wound site, BMSCs elicit an angiogenic response within the fibrin matrix. The mechanistic interactions between BMSCs and invading endothelial cells (ECs) during this process are not fully understood. Using a three‐dimensional, fibrin‐based angiogenesis model, we sought to investigate the proteolytic mechanisms by which BMSCs promote vessel morphogenesis. We find that BMSC‐mediated vessel formation depends on the proteolytic ability of membrane type 1‐matrix metalloproteinase (MT1‐MMP). Knockdown of the protease results in a small network of vessels with enlarged lumens. Contrastingly, vessel morphogenesis is unaffected by the knockdown of MMP‐2 and MMP‐9. Furthermore, we find that BMSC‐mediated vessel morphogenesis in vivo follows mechanisms similar to what we observe in vitro. Subcutaneous, cellular fibrin implants in C.B‐17/SCID mice form aberrant vasculature when MMPs are inhibited with a broad‐spectrum chemical inhibitor, and a very minimal amount of vessels when MT1‐MMP proteolytic activity is interrupted in ECs. Other studies have debated the necessity of MT1‐MMP in the context of vessel invasion in fibrin, but this study clearly demonstrates its requirement in BMSC‐mediated angiogenesis. J. Cell. Physiol. 227: 3546–3555, 2012. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.titleBone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1‐MMPen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelKinesiology and Sportsen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, 2154 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI 48109‐2110.en_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartment of Biomedical Engineering, University of California, Irvine, Irvine, Californiaen_US
dc.identifier.pmid22262018en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92409/1/24056_ftp.pdf
dc.identifier.doi10.1002/jcp.24056en_US
dc.identifier.sourceJournal of Cellular Physiologyen_US
dc.identifier.citedreferenceRehman J, Traktuev D, Li J, Merfeld‐Clauss S, Temm‐Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL. 2004. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109: 1292 – 1298.en_US
dc.identifier.citedreferenceLehti K, Allen E, Birkedal‐Hansen H, Holmbeck K, Miyake Y, Chun TH, Weiss SJ. 2005. An MT1‐MMP‐PDGF receptor‐beta axis regulates mural cell investment of the microvasculature. Genes Dev 19: 979 – 991.en_US
dc.identifier.citedreferenceLu C, Li XY, Hu Y, Rowe RG, Weiss SJ. 2010. MT1‐MMP controls human mesenchymal stem cell trafficking and differentiation. Blood 115: 221 – 229.en_US
dc.identifier.citedreferenceLutolf MP, Lauer‐Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA. 2003. Synthetic matrix metalloproteinase‐sensitive hydrogels for the conduction of tissue regeneration: Engineering cell‐invasion characteristics. Proc Natl Acad Sci USA 100: 5413 – 5418.en_US
dc.identifier.citedreferenceMoon JJ, Saik JE, Poche RA, Leslie‐Barbick JE, Lee SH, Smith AA, Dickinson ME, West JL. 2010. Biomimetic hydrogels with pro‐angiogenic properties. Biomaterials 31: 3840 – 3847.en_US
dc.identifier.citedreferenceMori H, Gjorevski N, Inman JL, Bissell MJ, Nelson CM. 2009. Self‐organization of engineered epithelial tubules by differential cellular motility. Proc Natl Acad Sci USA 106: 14890 – 14895.en_US
dc.identifier.citedreferenceMorikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. 2002. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160: 985 – 1000.en_US
dc.identifier.citedreferenceNakatsu MN, Hughes CC. 2008. An optimized three‐dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol 443: 65 – 82.en_US
dc.identifier.citedreferenceOzawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, McDonald DM, Blau HM. 2004. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 113: 516 – 527.en_US
dc.identifier.citedreferencePhelps EA, Landazuri N, Thule PM, Taylor WR, Garcia AJ. 2010. Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci USA 107: 3323 – 3328.en_US
dc.identifier.citedreferenceRaeber GP, Lutolf MP, Hubbell JA. 2005. Molecularly engineered PEG hydrogels: A novel model system for proteolytically mediated cell migration. Biophys J 89: 1374 – 1388.en_US
dc.identifier.citedreferenceSato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M. 1994. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370: 61 – 65.en_US
dc.identifier.citedreferenceSeliktar D, Zisch AH, Lutolf MP, Wrana JL, Hubbell JA. 2004. MMP‐2 sensitive, VEGF‐bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res A 68: 704 – 716.en_US
dc.identifier.citedreferenceSiedentop KH, Harris DM, Sanchez B. 1985. Autologous fibrin tissue adhesive. Laryngoscope 95: 1074 – 1076.en_US
dc.identifier.citedreferenceSounni NE, Dehne K, van Kempen L, Egeblad M, Affara NI, Cuevas I, Wiesen J, Junankar S, Korets L, Lee J, Shen J, Morrison CJ, Overall CM, Krane SM, Werb Z, Boudreau N, Coussens LM. 2010. Stromal regulation of vessel stability by MMP14 and TGFbeta. Dis Model Mech 3: 317 – 332.en_US
dc.identifier.citedreferenceToth M, Chvyrkova I, Bernardo MM, Hernandez‐Barrantes S, Fridman R. 2003. Pro‐MMP‐9 activation by the MT1‐MMP/MMP‐2 axis and MMP‐3: Role of TIMP‐2 and plasma membranes. Biochem Biophys Res Commun 308: 386 – 395.en_US
dc.identifier.citedreferenceTurk BE, Huang LL, Piro ET, Cantley LC. 2001. Determination of protease cleavage site motifs using mixture‐based oriented peptide libraries. Nat Biotechnol 19: 661 – 667.en_US
dc.identifier.citedreferenceUttamchandani M, Wang J, Li J, Hu M, Sun H, Chen KY, Liu K, Yao SQ. 2007. Inhibitor fingerprinting of matrix metalloproteases using a combinatorial peptide hydroxamate library. J Am Chem Soc 129: 7848 – 7858.en_US
dc.identifier.citedreferencevan Hinsbergh VW, Collen A, Koolwijk P. 2001. Role of fibrin matrix in angiogenesis. Ann NY Acad Sci 936: 426 – 437.en_US
dc.identifier.citedreferenceWebster I, West PJ. 2002. Adhesives for Medical Applications. In: Dumitriu S, editor. Polymeric Biomaterials. 2 ed. New York: Marcel Dekker, Inc. pp 703 – 738.en_US
dc.identifier.citedreferenceYana I, Sagara H, Takaki S, Takatsu K, Nakamura K, Nakao K, Katsuki M, Taniguchi S, Aoki T, Sato H, Weiss SJ, Seiki M. 2007. Crosstalk between neovessels and mural cells directs the site‐specific expression of MT1‐MMP to endothelial tip cells. J Cell Sci 120: 1607 – 1614.en_US
dc.identifier.citedreferenceYu Q, Stamenkovic I. 1999. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44‐mediated tumor invasion. Genes Dev 13: 35 – 48.en_US
dc.identifier.citedreferenceZandonella C. 2003. Tissue engineering: The beat goes on. Nature 421: 884 – 886.en_US
dc.identifier.citedreferenceAu P, Tam J, Fukumura D, Jain RK. 2008. Bone marrow‐derived mesenchymal stem cells facilitate engineering of long‐lasting functional vasculature. Blood 111: 4551 – 4558.en_US
dc.identifier.citedreferenceBrooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler‐Stevenson WG, Quigley JP, Cheresh DA. 1996. Localization of matrix metalloproteinase MMP‐2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85: 683 – 693.en_US
dc.identifier.citedreferenceCaplan AI. 2008. All MSCs are pericytes? Cell Stem Cell 3: 229 – 230.en_US
dc.identifier.citedreferenceCarmeliet P, Jain RK. 2000. Angiogenesis in cancer and other diseases. Nature 407: 249 – 257.en_US
dc.identifier.citedreferenceClark RA. 2001. Fibrin and wound healing. Ann NY Acad Sci 936: 355 – 367.en_US
dc.identifier.citedreferenceCrisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B. 2008. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3: 301 – 313.en_US
dc.identifier.citedreferenceEgeblad M, Werb Z. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161 – 174.en_US
dc.identifier.citedreferenceFarrell DH, al‐Mondhiry HA. 1997. Human fibroblast adhesion to fibrinogen. Biochemistry 36: 1123 – 1128.en_US
dc.identifier.citedreferenceFerrari G, Cusella‐De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F. 1998. Muscle regeneration by bone marrow‐derived myogenic progenitors. Science 279: 1528 – 1530.en_US
dc.identifier.citedreferenceFilippov S, Koenig GC, Chun TH, Hotary KB, Ota I, Bugge TH, Roberts JD, Fay WP, Birkedal‐Hansen H, Holmbeck K, Sabeh F, Allen ED, Weiss SJ. 2005. MT1‐matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. J Exp Med 202: 663 – 671.en_US
dc.identifier.citedreferenceFuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, Weissman NJ, Leon MB, Epstein SE, Kornowski R. 2001. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 37: 1726 – 1732.en_US
dc.identifier.citedreferenceGhajar CM, Blevins KS, Hughes CC, George SC, Putnam AJ. 2006. Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng 12: 2875 – 2888.en_US
dc.identifier.citedreferenceGhajar CM, Chen X, Harris JW, Suresh V, Hughes CC, Jeon NL, Putnam AJ, George SC. 2008a. The effect of matrix density on the regulation of 3‐D capillary morphogenesis. Biophys J 94: 1930 – 1941.en_US
dc.identifier.citedreferenceGhajar CM, George SC, Putnam AJ. 2008b. Matrix metalloproteinase control of capillary morphogenesis. Crit Rev Eukaryot Gene Expr 3: 251 – 278.en_US
dc.identifier.citedreferenceGhajar CM, Kachgal S, Kniazeva E, Mori H, Costes SV, George SC, Putnam AJ. 2010. Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp Cell Res 316: 813 – 825.en_US
dc.identifier.citedreferenceGocheva V, Chen X, Peters C, Reinheckel T, Joyce JA. 2010a. Deletion of cathepsin H perturbs angiogenic switching, vascularization and growth of tumors in a mouse model of pancreatic islet cell cancer. Biol Chem 391: 937 – 945.en_US
dc.identifier.citedreferenceGocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T, Joyce JA. 2010b. IL‐4 induces cathepsin protease activity in tumor‐associated macrophages to promote cancer growth and invasion. Genes Dev 24: 241 – 255.en_US
dc.identifier.citedreferenceGrigoriadis AE, Heersche JN, Aubin JE. 1988. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone‐derived clonal cell population: Effect of dexamethasone. J Cell Biol 106: 2139 – 2151.en_US
dc.identifier.citedreferenceHanemaaijer R, Koolwijk P, le Clercq L, de Vree WJ, van Hinsbergh VW. 1993. Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells. Effects of tumour necrosis factor alpha, interleukin 1 and phorbol ester. Biochem J 296: 803 – 809.en_US
dc.identifier.citedreferenceHanjaya‐Putra D, Bose V, Shen YI, Yee J, Khetan S, Fox‐Talbot K, Steenbergen C, Burdick JA, Gerecht S. 2011. Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118: 804 – 815.en_US
dc.identifier.citedreferenceHauner H, Schmid P, Pfeiffer EF. 1987. Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab 64: 832 – 835.en_US
dc.identifier.citedreferenceHeissig B, Hattori K, Friedrich M, Rafii S, Werb Z. 2003. Angiogenesis: Vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol 10: 136 – 141.en_US
dc.identifier.citedreferenceHellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, Betsholtz C. 2001. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153: 543 – 553.en_US
dc.identifier.citedreferenceHildenbrand R, Dilger I, Horlin A, Stutte HJ. 1995. Urokinase and macrophages in tumour angiogenesis. Br J Cancer 72: 818 – 823.en_US
dc.identifier.citedreferenceHotary KB, Yana I, Sabeh F, Li XY, Holmbeck K, Birkedal‐Hansen H, Allen ED, Hiraoka N, Weiss SJ. 2002. Matrix metalloproteinases (MMPs) regulate fibrin‐invasive activity via MT1‐MMP‐dependent and ‐independent processes. J Exp Med 195: 295 – 308.en_US
dc.identifier.citedreferenceKachgal S, Putnam AJ. 2011. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis 14: 47 – 59.en_US
dc.identifier.citedreferenceKroon ME, Koolwijk P, van Goor H, Weidle UH, Collen A, van der Pluijm G, van Hinsbergh VW. 1999. Role and localization of urokinase receptor in the formation of new microvascular structures in fibrin matrices. Am J Pathol 154: 1731 – 1742.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.