Show simple item record

In Vivo Microscopy of Targeted Vessel Occlusion Employing Acoustic Droplet Vaporization

dc.contributor.authorSamuel, Stanleyen_US
dc.contributor.authorDuprey, Ambroiseen_US
dc.contributor.authorFabiilli, Mario L.en_US
dc.contributor.authorBull, Joseph L.en_US
dc.contributor.authorBrian Fowlkes, Jeffreyen_US
dc.date.accessioned2012-08-09T14:56:08Z
dc.date.available2013-10-01T17:06:32Zen_US
dc.date.issued2012-08en_US
dc.identifier.citationSamuel, Stanley ; Duprey, Ambroise ; Fabiilli, Mario L. ; Bull, Joseph L. ; Brian Fowlkes, Jeffrey (2012). " In Vivo Microscopy of Targeted Vessel Occlusion Employing Acoustic Droplet Vaporization." Microcirculation 19(6). <http://hdl.handle.net/2027.42/92416>en_US
dc.identifier.issn1073-9688en_US
dc.identifier.issn1549-8719en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92416
dc.description.abstractObjective:  Embolotherapy is a potential means to treat a variety of cancers. Our approach—gas embolotherapy—introduces the droplets upstream from the tumor and then acoustically activates them to form bubbles for occlusion—a process known as ADV. We wanted to provide the first optical documentation of ADV, lodged bubbles, or vessel occlusion in vivo . Methods:  We used the rat cremaster muscle for in vivo microscopy. Perfluorocarbon droplets were administered into the aortic arch. Ultrasound exposures in the cremaster induced vaporization. The cremaster was examined pre‐ and post‐exposure for ADV‐related effects. Two sets of experiments compared the effect of exposure in the capillaries versus the first order arteriole. Results:  Bubbles that lodge following capillary exposure are significantly larger (76 μm mean length, 36 μm mean diameter) than those following feeder vessel exposure (25 μm mean length, 11 μm mean diameter). Despite the differing sizes in bubbles, the ratio of bubble length to the hydraulic diameter of all lodged bubbles was 2.11 (±0.65; n  = 112), which agrees with theoretical predictions and experimental observations. Conclusions:  Our results provide the first optical evidence of targeted vessel occlusion through ADV. These findings could lay the groundwork for the advancement of gas embolotherapy.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAcoustic Droplet Vaporizationen_US
dc.subject.otherPerfluorocarbon Dropletsen_US
dc.subject.otherUltrasounden_US
dc.subject.otherCancer Therapyen_US
dc.subject.otherGas Embolotherapyen_US
dc.titleIn Vivo Microscopy of Targeted Vessel Occlusion Employing Acoustic Droplet Vaporizationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelCardiovascular Medicineen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumDepartment of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USAen_US
dc.identifier.pmid22404846en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92416/1/micc176.pdf
dc.identifier.doi10.1111/j.1549-8719.2012.00176.xen_US
dc.identifier.sourceMicrocirculationen_US
dc.identifier.citedreferenceLombard JH, Frisbee JC, Greene AS, Hudetz AG, Roman RJ, Tonellato PJ. Microvascular flow and tissue Po 2 in skeletal muscle of chronic reduced renal mass hypertensive rats. Am J Physiol Heart Circ Physiol 279: H2295 – H2302, 2000.en_US
dc.identifier.citedreferenceBaez S. An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 5: 384 – 394, 1973.en_US
dc.identifier.citedreferenceBakker EN, Versluis JP, Sipkema P, VanTeeffelen JW, Rolf TM, Spaan JA, VanBavel E. Differential structural adaptation to haemodynamics along single rat cremaster arterioles. J Physiol 548: 549 – 555, 2003.en_US
dc.identifier.citedreferenceBoehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390: 404 – 407, 1997.en_US
dc.identifier.citedreferenceBranger AB, Eckmann DM. Theoretical and experimental intravascular gas embolism absorption dynamics. J Appl Physiol 87: 1287 – 1295, 1999.en_US
dc.identifier.citedreferenceCalderon AJ, Heo YS, Huh D, Futai N, Takayama S, Fowlkes JB, Bull JL. Microfluidic model of bubble lodging in microvessel bifurcations. Appl Phys Lett 89: 244103, 2006.en_US
dc.identifier.citedreferenceEckmann DM, Branger AB, Cavanagh DP. Correction—gas embolism. N Engl J Med 342: 483, 2000.en_US
dc.identifier.citedreferenceFabiilli ML, Haworth KJ, Fakhri NH, Kripfgans OD, Carson PL, Fowlkes JB. The role of inertial cavitation in acoustic droplet vaporization. IEEE Trans Ultrason Ferroelectr Freq Control 56: 1006 – 1017, 2009.en_US
dc.identifier.citedreferenceFranken RJ, Peter FW, Anderson GL, Wang WZ, Werker PM, Schuschke DA, Kon M, Barker JH. Anatomy of the feeding blood vessels of the cremaster muscle in the rat. Microsurgery 17: 402 – 408, 1996.en_US
dc.identifier.citedreferenceGiesecke T, Hynynen K. Ultrasound‐mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro. Ultrasound Med Biol 29: 1359 – 1365, 2003.en_US
dc.identifier.citedreferenceHalliday D, Resnick R, Walker J. Fundamentals of Physics. New York: John Wiley & Sons, Inc., 1997, 485.en_US
dc.identifier.citedreferenceHeiser A. Carotid artery catheterization. In: Rat Jugular Vein and Carotid Artery Catheterization for Acute Survival Studies. NY: Springer, 2007, pp. 49 – 65.en_US
dc.identifier.citedreferenceKripfgans OD, Fowlkes JB, Miller D L, Eldevik OP, Carson PL. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 26: 1177 – 1189, 2000.en_US
dc.identifier.citedreferenceLaccourreye O, Laurent A, Polivka M, Wassef M, Domas L, Brasnu D, Merland JJ. Biodegradable starch microspheres for cerebral arterial embolization. Invest Radiol 28: 150 – 154, 1993.en_US
dc.identifier.citedreferenceLo AH, Kripfgans OD, Carson PL, Rothman ED, Fowlkes JB. Acoustic droplet vaporization threshold: effects of pulse duration and contrast agent. IEEE Trans Ultrason Ferroelectr Freq Control 54: 933 – 946, 2007.en_US
dc.identifier.citedreferenceMeininger GA, Fehr KL, Yates MB. Anatomic and hemodynamic characteristics of the blood vessels feeding the cremaster skeletal muscle in the rat. Microvasc Res 33: 81 – 97, 1987.en_US
dc.identifier.citedreferenceMuth CM, Shank ES. Gas embolism. N Engl J Med 342: 476 – 482, 2000.en_US
dc.identifier.citedreferenceNanhekhan LV, Siemionow M. Microcirculatory hemodynamics of the rat cremaster muscle flap in reduced blood flow states. Ann Plast Surg 51: 182 – 188, 2003.en_US
dc.identifier.citedreferenceQamar A, Wong ZZ, Fowlkes JB, Bull JL. Dynamics of acoustic droplet vaporization in gas embolotherapy. Appl Phys Lett 96: 143702, 2010.en_US
dc.identifier.citedreferenceSamuel S, Cooper MA, Bull JL, Fowlkes JB, Miller DL. An ex vivo study of the correlation between acoustic emission and microvascular damage. Ultrasound Med Biol 35: 1574 – 1586, 2009.en_US
dc.identifier.citedreferenceSmaje L, Zweifach BW, Intaglietta M. Micropressures and capillary filtration coefficients in single vessels of the cremaster muscle of the rat. Microvasc Res 2: 96 – 110, 1970.en_US
dc.identifier.citedreferenceSprent P, Smeeton NC. Chapter 6: methods for two independent samples. In: Applied Nonparametric Statistical Methods. Florida: Chapman & Hall/CRC, 2007, pp.151 – 191.en_US
dc.identifier.citedreferenceWang Y, Dimitrakopoulos P. Low‐Reynolds‐number droplet motion in a square microfluidic channel. Theor Comput Fluid Dyn 26: 361 – 379, 2011.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.