Show simple item record

Snail Destabilizes Cell Surface Crumbs3a

dc.contributor.authorHarder, Jennifer L.en_US
dc.contributor.authorWhiteman, Eileen L.en_US
dc.contributor.authorPieczynski, Jay N.en_US
dc.contributor.authorLiu, Chia‐jenen_US
dc.contributor.authorMargolis, Benen_US
dc.date.accessioned2012-08-09T14:56:25Z
dc.date.available2013-10-01T17:06:32Zen_US
dc.date.issued2012-08en_US
dc.identifier.citationHarder, Jennifer L.; Whiteman, Eileen L.; Pieczynski, Jay N.; Liu, Chia‐jen ; Margolis, Ben (2012). "Snail Destabilizes Cell Surface Crumbs3a." Traffic 13(8): 1170-1185. <http://hdl.handle.net/2027.42/92424>en_US
dc.identifier.issn1398-9219en_US
dc.identifier.issn1600-0854en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92424
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSnailen_US
dc.subject.otherEMTen_US
dc.subject.otherGlycosylationen_US
dc.subject.otherPolarityen_US
dc.subject.otherCrumbsen_US
dc.subject.otherEpithelialen_US
dc.subject.otherApical‐Basalen_US
dc.subject.otherSialylationen_US
dc.titleSnail Destabilizes Cell Surface Crumbs3aen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22554228en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92424/1/tra1376.pdf
dc.identifier.doi10.1111/j.1600-0854.2012.01376.xen_US
dc.identifier.sourceTrafficen_US
dc.identifier.citedreferenceMorimoto S, Nishimura N, Terai T, Manabe S, Yamamoto Y, Shinahara W, Miyake H, Tashiro S, Shimada M, Sasaki T. Rab13 mediates the continuous endocytic recycling of occludin to the cell surface. J Biol Chem 2005; 280: 2220 – 2228.en_US
dc.identifier.citedreferenceZhou B, Wu Y, Lin X. Retromer regulates apical‐basal polarity through recycling Crumbs. Dev Biol 2011; 360: 87 – 95.en_US
dc.identifier.citedreferenceYu CY, Chen JY, Lin YY, Shen KF, Lin WL, Chien CL, ter Beest MB, Jou TS. A bipartite signal regulates the faithful delivery of apical domain marker podocalyxin/Gp135. Mol Biol Cell 2007; 18: 1710 – 1722.en_US
dc.identifier.citedreferenceShore EM, Nelson WJ. Biosynthesis of the cell adhesion molecule uvomorulin (E‐cadherin) in Madin‐Darby canine kidney epithelial cells. J Biol Chem 1991; 266: 19672 – 19680.en_US
dc.identifier.citedreferenceLe TL, Yap AS, Stow JL. Recycling of E‐cadherin: a potential mechanism for regulating cadherin dynamics. J Cell Biol 1999; 146: 219 – 232.en_US
dc.identifier.citedreferenceDesclozeaux M, Venturato J, Wylie FG, Kay JG, Joseph SR, Le HT, Stow JL. Active Rab11 and functional recycling endosome are required for E‐cadherin trafficking and lumen formation during epithelial morphogenesis. Am J Physiol Cell Physiol 2008; 295: C545 – C556.en_US
dc.identifier.citedreferenceFujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, Sommer T, Birchmeier W. Hakai, a c‐Cbl‐like protein, ubiquitinates and induces endocytosis of the E‐cadherin complex. Nat Cell Biol 2002; 4: 222 – 231.en_US
dc.identifier.citedreferenceTraweger A, Fang D, Liu YC, Stelzhammer W, Krizbai IA, Fresser F, Bauer HC, Bauer H. The tight junction‐specific protein occludin is a functional target of the E3 ubiquitin‐protein ligase itch. J Biol Chem 2002; 277: 10201 – 10208.en_US
dc.identifier.citedreferenceLin Y, Wu Y, Li J, Dong C, Ye X, Chi YI, Evers BM, Zhou BP. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine‐specific demethylase 1. EMBO J 2010; 29: 1803 – 1816.en_US
dc.identifier.citedreferenceAmith SR, Jayanth P, Franchuk S, Finlay T, Seyrantepe V, Beyaert R, Pshezhetsky AV, Szewczuk MR. Neu1 desialylation of sialyl alpha‐2,3‐linked beta‐galactosyl residues of TOLL‐like receptor 4 is essential for receptor activation and cellular signaling. Cell Signal 2010; 22: 314 – 324.en_US
dc.identifier.citedreferenceMorell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 1971; 246: 1461 – 1467.en_US
dc.identifier.citedreferenceRichards AA, Colgrave ML, Zhang J, Webster J, Simpson F, Preston E, Wilks D, Hoehn KL, Stephenson M, Macdonald GA, Prins JB, Cooney GJ, Xu A, Whitehead JP. Sialic acid modification of adiponectin is not required for multimerization or secretion but determines half‐life in circulation. Mol Endocrinol 2010; 24: 229 – 239.en_US
dc.identifier.citedreferenceBrockhausen I. Mucin‐type O‐glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep 2006; 7: 599 – 604.en_US
dc.identifier.citedreferenceHarduin‐Lepers A, Krzewinski‐Recchi MA, Colomb F, Foulquier F, Groux‐Degroote S, Delannoy P. Sialyltransferases functions in cancers. Front Biosci (Elite Ed) 2012; 4: 499 – 515.en_US
dc.identifier.citedreferenceBurchell J, Poulsom R, Hanby A, Whitehouse C, Cooper L, Clausen H, Miles D, Taylor‐Papadimitriou J. An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology 1999; 9: 1307 – 1311.en_US
dc.identifier.citedreferencePerez‐Garay M, Arteta B, Pages L, de Llorens R, de Bolos C, Vidal‐Vanaclocha F, Peracaula R. alpha2,3‐sialyltransferase ST3Gal III modulates pancreatic cancer cell motility and adhesion in vitro and enhances its metastatic potential in vivo. PLoS One 2010;5.en_US
dc.identifier.citedreferenceMiyagi T, Wada T, Yamaguchi K, Shiozaki K, Sato I, Kakugawa Y, Yamanami H, Fujiya T. Human sialidase as a cancer marker. Proteomics 2008; 8: 3303 – 3311.en_US
dc.identifier.citedreferenceHedlund M, Ng E, Varki A, Varki NM. alpha 2‐6‐Linked sialic acids on N‐glycans modulate carcinoma differentiation in vivo. Cancer Res 2008; 68: 388 – 394.en_US
dc.identifier.citedreferenceSata T, Roth J, Zuber C, Stamm B, Heitz PU. Expression of alpha 2,6‐linked sialic acid residues in neoplastic but not in normal human colonic mucosa. A lectin‐gold cytochemical study with Sambucus nigra and Maackia amurensis lectins. Am J Pathol 1991; 139: 1435 – 1448.en_US
dc.identifier.citedreferenceNatsugoe S, Uchikado Y, Okumura H, Matsumoto M, Setoyama T, Tamotsu K, Kita Y, Sakamoto A, Owaki T, Ishigami S, Aikou T. Snail plays a key role in E‐cadherin‐preserved esophageal squamous cell carcinoma. Oncol Rep 2007; 17: 517 – 523.en_US
dc.identifier.citedreferenceHakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A 2002; 99: 10231 – 10233.en_US
dc.identifier.citedreferenceReis CA, Osorio H, Silva L, Gomes C, David L. Alterations in glycosylation as biomarkers for cancer detection. J Clin Pathol 2010; 63: 322 – 329.en_US
dc.identifier.citedreferenceMaupin KA, Sinha A, Eugster E, Miller J, Ross J, Paulino V, Keshamouni VG, Tran N, Berens M, Webb C, Haab BB. Glycogene expression alterations associated with pancreatic cancer epithelial‐mesenchymal transition in complementary model systems. PLoS One 2010; 5: e13002.en_US
dc.identifier.citedreferenceWhiteman EL, Chen JJ, Birnbaum MJ. Platelet‐derived growth factor (PDGF) stimulates glucose transport in 3 T3‐L1 adipocytes overexpressing PDGF receptor by a pathway independent of insulin receptor substrates. Endocrinology 2003; 144: 3811 – 3820.en_US
dc.identifier.citedreferenceStraight SW, Pieczynski JN, Whiteman EL, Liu CJ, Margolis B. Mammalian lin‐7 stabilizes polarity protein complexes. J Biol Chem 2006; 281: 37738 – 37747.en_US
dc.identifier.citedreferenceMarshall OJ. PerlPrimer: cross‐platform, graphical primer design for standard, bisulphite and real‐time PCR. Bioinformatics 2004; 20: 2471 – 2472.en_US
dc.identifier.citedreferenceAssémat E, Bazellières E, Pallesi‐Pocachard E, Le Bivic A, Massey‐Harroche D. Polarity complex proteins. Biochim Biophys Acta 2008; 1778: 614 – 630.en_US
dc.identifier.citedreferencePieczynski J, Margolis B. Protein complexes that control renal epithelial polarity. Am J Physiol Renal Physiol 2011; 300: F589 – F601.en_US
dc.identifier.citedreferenceThiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Bio 2006; 7: 131 – 142.en_US
dc.identifier.citedreferenceNelson WJ. Remodeling epithelial cell organization: transitions between front‐rear and apical‐basal polarity. Cold Spring Harb Perspect Biol 2009; 1: a000513.en_US
dc.identifier.citedreferenceWodarz A, Näthke I. Cell polarity in development and cancer. Nat Cell Biol 2007; 9: 1016 – 1024.en_US
dc.identifier.citedreferenceEtienne‐Manneville S. Polarity proteins in migration and invasion. Oncogene 2008; 27: 6970 – 6980.en_US
dc.identifier.citedreferenceTanos B, Rodriguez‐Boulan E. The epithelial polarity program: machineries involved and their hijacking by cancer. Oncogene 2008; 27: 6939 – 6957.en_US
dc.identifier.citedreferenceHuang L, Muthuswamy SK. Polarity protein alterations in carcinoma: a focus on emerging roles for polarity regulators. Curr Opin Genet Dev 2010; 20: 41 – 50.en_US
dc.identifier.citedreferenceWodarz A, Hinz U, Engelbert M, Knust E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 1995; 82: 67 – 76.en_US
dc.identifier.citedreferenceMakarova O, Roh MH, Liu CJ, Laurinec S, Margolis B. Mammalian Crumbs3 is a small transmembrane protein linked to protein associated with Lin‐7 (Pals1). Gene 2003; 302 ( 1–2 ): 21 – 29.en_US
dc.identifier.citedreferenceLu H, Bilder D. Endocytic control of epithelial polarity and proliferation in Drosophila. Nat Cell Biol 2005; 7: 1232 – 1239.en_US
dc.identifier.citedreferenceOmori Y, Malicki J. oko meduzy and related crumbs genes are determinants of apical cell features in the vertebrate embryo. Curr Biol 2006; 16: 945 – 957.en_US
dc.identifier.citedreferenceLaprise P, Beronja S, Silva‐Gagliardi NF, Pellikka M, Jensen AM, McGlade CJ, Tepass U. The FERM protein Yurt is a negative regulatory component of the Crumbs complex that controls epithelial polarity and apical membrane size. Dev Cell 2006; 11: 363 – 374.en_US
dc.identifier.citedreferenceRichardson EC, Pichaud F. Crumbs is required to achieve proper organ size control during Drosophila head development. Development 2010; 137: 641 – 650.en_US
dc.identifier.citedreferenceParsons LM, Grzeschik NA, Allott ML, Richardson HE. Lgl/aPKC and Crb regulate the Salvador/Warts/Hippo pathway. Fly (Austin) 2010; 4: 288 – 293.en_US
dc.identifier.citedreferenceFan S, Hurd TW, Liu CJ, Straight SW, Weimbs T, Hurd EA, Domino SE, Margolis B. Polarity proteins control ciliogenesis via kinesin motor interactions. Curr Biol 2004; 14: 1451 – 1461.en_US
dc.identifier.citedreferenceKarp CM, Tan TT, Mathew R, Nelson D, Mukherjee C, Degenhardt K, Karantza‐Wadsworth V, White E. Role of the polarity determinant crumbs in suppressing mammalian epithelial tumor progression. Cancer Res 2008; 68: 4105 – 4115.en_US
dc.identifier.citedreferenceLemmers C, Michel D, Lane‐Guermonprez L, Delgrossi MH, Medina E, Arsanto JP, Le Bivic A. CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Mol Biol Cell 2004; 15: 1324 – 1333.en_US
dc.identifier.citedreferenceFan S, Fogg V, Wang Q, Chen XW, Liu CJ, Margolis B. A novel Crumbs3 isoform regulates cell division and ciliogenesis via importin beta interactions. J Cell Biol 2007; 178: 387 – 398.en_US
dc.identifier.citedreferenceBilder D, Schober M, Perrimon N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nat Cell Biol 2003; 5: 53 – 58.en_US
dc.identifier.citedreferenceChalmers AD, Pambos M, Mason J, Lang S, Wylie C, Papalopulu N. aPKC, Crumbs3 and Lgl2 control apicobasal polarity in early vertebrate development. Development 2005; 132: 977 – 986.en_US
dc.identifier.citedreferenceYamanaka T, Ohno S. Role of Lgl/Dlg/Scribble in the regulation of epithelial junction, polarity and growth. Front Biosci 2008; 13: 6693 – 6707.en_US
dc.identifier.citedreferenceOzdamar B, Bose R, Barrios‐Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 2005; 307: 1603 – 1609.en_US
dc.identifier.citedreferenceJavier RT. Cell polarity proteins: common targets for tumorigenic human viruses. Oncogene 2008; 27: 7031 – 7046.en_US
dc.identifier.citedreferenceMcCaffrey LM, Macara IG. Epithelial organization, cell polarity and tumorigenesis. Trends Cell Biol 2011; 21: 727 – 735.en_US
dc.identifier.citedreferenceMoreno‐Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 2008; 27: 6958 – 6969.en_US
dc.identifier.citedreferenceCano A, Perez‐Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial‐mesenchymal transitions by repressing E‐cadherin expression. Nat Cell Biol 2000; 2: 76 – 83.en_US
dc.identifier.citedreferenceBatlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A. The transcription factor snail is a repressor of E‐cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2: 84 – 89.en_US
dc.identifier.citedreferenceWhiteman EL, Liu CJ, Fearon ER, Margolis B. The transcription factor snail represses Crumbs3 expression and disrupts apico‐basal polarity complexes. Oncogene 2008; 27: 3875 – 3879.en_US
dc.identifier.citedreferenceDebnath J, Brugge JS. Modelling glandular epithelial cancers in three‐dimensional cultures. Nat Rev Cancer 2005; 5: 675 – 688.en_US
dc.identifier.citedreferenceLeroy P, Mostov KE. Slug is required for cell survival during partial epithelial‐mesenchymal transition of HGF‐induced tubulogenesis. Mol Biol Cell 2007; 18: 1943 – 1952.en_US
dc.identifier.citedreferenceFogg VC, Liu CJ, Margolis B. Multiple regions of Crumbs3 are required for tight junction formation in MCF10A cells. J Cell Sci 2005; 118 ( Pt 13 ): 2859 – 2869.en_US
dc.identifier.citedreferenceDhasarathy A, Kajita M, Wade PA. The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor‐alpha. Mol Endocrinol 2007; 21: 2907 – 2918.en_US
dc.identifier.citedreferenceCheng L, Zha Z, Lang B, Liu J, Yao X. Heregulin‐beta1 promotes metastasis of breast cancer cell line SKBR3 through upregulation of Snail and induction of epithelial‐mesenchymal transition. Cancer Lett 2009; 280: 50 – 60.en_US
dc.identifier.citedreferenceOhkubo T, Ozawa M. The transcription factor Snail downregulates the tight junction components independently of E‐cadherin downregulation. J Cell Sci 2004; 117 ( Pt 9 ): 1675 – 1685.en_US
dc.identifier.citedreferenceBarrallo‐Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005; 132: 3151 – 3161.en_US
dc.identifier.citedreferenceWu Y, Zhou BP. Snail: more than EMT. Cell Adh Migr 2010; 4: 199 – 203.en_US
dc.identifier.citedreferenceSchlüter MA, Pfarr CS, Pieczynski J, Whiteman EL, Hurd TW, Fan S, Liu CJ, Margolis B. Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. Mol Biology Cell 2009; 20: 4652 – 4663.en_US
dc.identifier.citedreferenceWeisz OA. Acidification and protein traffic. Int Rev Cytol 2003; 226: 259 – 319.en_US
dc.identifier.citedreferenceVastag M, Neuhofer W, Nagel W, Beck FX. Ammonium affects tight junctions and the cytoskeleton in MDCK cells. Pflugers Arch 2005; 449: 384 – 391.en_US
dc.identifier.citedreferenceAcloque H, Adams MS, Fishwick K, Bronner‐Fraser M, Nieto MA. Epithelial‐mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009; 119: 1438 – 1449.en_US
dc.identifier.citedreferencePawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. Science 2003; 300: 445 – 452.en_US
dc.identifier.citedreferenceDall'Olio F, Chiricolo M. Sialyltransferases in cancer. Glycoconj J 2001; 18: 841 – 850.en_US
dc.identifier.citedreferenceWang PH. Altered glycosylation in cancer: sialic acids and sialyltransferases. J Cancer Mol 2005; 1: 73 – 81.en_US
dc.identifier.citedreferenceGeisler C, Jarvis DL. Letter to the glyco‐forum: effective glycoanalysis with Maackia amurensis lectins requires a clear understanding of their binding specificities. Glycobiology 2011; 21: 988 – 993.en_US
dc.identifier.citedreferenceVerges M. Retromer: multipurpose sorting and specialization in polarized transport. Int Rev Cell Mol Biol 2008; 271: 153 – 198.en_US
dc.identifier.citedreferencePocha SM, Wassmer T, Niehage C, Hoflack B, Knust E. Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs. Curr Biol 2011; 21: 1111 – 1117.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.