Show simple item record

Two‐Photon Fluorescence Imaging Super‐Enhanced by Multishell Nanophotonic Particles, with Application to Subcellular pH

dc.contributor.authorRay, Aniruddhaen_US
dc.contributor.authorLee, Yong‐eun Kooen_US
dc.contributor.authorKim, Gwangseongen_US
dc.contributor.authorKopelman, Raoulen_US
dc.date.accessioned2012-08-09T14:56:44Z
dc.date.available2013-09-03T15:38:27Zen_US
dc.date.issued2012-07-23en_US
dc.identifier.citationRay, Aniruddha; Lee, Yong‐eun Koo ; Kim, Gwangseong; Kopelman, Raoul (2012). "Twoâ Photon Fluorescence Imaging Superâ Enhanced by Multishell Nanophotonic Particles, with Application to Subcellular pH." Small 8(14): 2213-2221. <http://hdl.handle.net/2027.42/92437>en_US
dc.identifier.issn1613-6810en_US
dc.identifier.issn1613-6829en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92437
dc.description.abstractA novel nanophotonic method for enhancing the two‐photon fluorescence signal of a fluorophore is presented. It utilizes the second harmonic (SH) of the exciting light generated by noble metal nanospheres in whose near‐field the dye molecules are placed, to further enhance the dye's fluorescence signal in addition to the usual metal‐enhanced fluorescence phenomenon. This method enables demonstration, for the first time, of two‐photon fluorescence enhancement inside a biological system, namely live cells. A multishell hydrogel nanoparticle containing a silver core, a protective citrate capping, which serves also as an excitation quenching inhibitor spacer, a pH indicator dye shell, and a polyacrylamide cladding are employed. Utilizing this technique, an enhancement of up to 20 times in the two‐photon fluorescence of the indicator dye is observed. Although a significant portion of the enhanced fluorescence signal is due to one‐photon processes accompanying the SH generation of the exciting light, this method preserves all the advantages of infrared‐excited, two‐photon microscopy: enhanced penetration depth, localized excitation, low photobleaching, low autofluorescence, and low cellular damage. The two‐photon fluorescence signal of a fluorophore is enhanced by utilizing the second harmonic of the exciting light generated by noble metal nanospheres in whose near‐field dye molecules are placed. A multishell hydrogel nanoparticle containing a silver core, protective citrate capping, pH indicator dye, and polyacrylamide cladding is utilized for pH sensing and fluorescence imaging in live cells.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherFluorescenceen_US
dc.subject.otherPhotonicsen_US
dc.subject.otherSecond‐Harmonic Generationen_US
dc.subject.otherSilver Nanospheresen_US
dc.subject.otherIntracellular PHen_US
dc.titleTwo‐Photon Fluorescence Imaging Super‐Enhanced by Multishell Nanophotonic Particles, with Application to Subcellular pHen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumBioPhysics, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumBioPhysics, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109, USA.en_US
dc.identifier.pmid22517569en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92437/1/2213_ftp.pdf
dc.identifier.doi10.1002/smll.201102664en_US
dc.identifier.sourceSmallen_US
dc.identifier.citedreferenceJ. Griffin, A. K. Singh, D. Senapati, E. Lee, K. Gaylor, J. Jones‐Boone, P. C. Ray, Small 2009, 5, 839 – 845.en_US
dc.identifier.citedreferenceR. He, Y. Su, K. Cho, C. Lin, N. Chang, C. Chang, S. Chen, Opt. Express 2009, 17, 5987 – 5997.en_US
dc.identifier.citedreferenceW. Wenseleers, F. Stellacci, T. Meyer‐Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, J. W. Perry, J. Phys. Chem. B 2002, 106, 6853 – 6863.en_US
dc.identifier.citedreferenceE. J. Sánchez, L. Novotny, X. S. Xie, Phys. Rev. Lett. 1999, 82, 4014 – 4017.en_US
dc.identifier.citedreferenceL. Novotny, R. X. Bian, X. S. Xie, Phys. Rev. Lett. 1997, 79, 645 – 648.en_US
dc.identifier.citedreferenceE. J. McLaurin, A. B. Greytak, M. G. Bawendi, D. G. Nocera, J. Am. Chem. Soc. 2009, 131, 12994 – 13001.en_US
dc.identifier.citedreferenceP. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 2006, 96, 113002.en_US
dc.identifier.citedreferenceK. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. Lakowicz, C. D. Geddes, Curr. Opin. Biotechnol. 2005, 16, 55 – 62.en_US
dc.identifier.citedreferenceC. Lin, K. Chiu, C. Chang, S. Chang, T. Guo, S. Chen, Opt. Express 2010, 18, 12807 – 12817.en_US
dc.identifier.citedreferenceE. C. Hao, G. C. Schatz, R. C. Johnson, J. T. Hupp, J. Chem. Phys. 2002, 117, 5963 – 5966.en_US
dc.identifier.citedreferenceP. C. Ray, Chem. Rev. 2010, 110, 5332 – 5365.en_US
dc.identifier.citedreferenceF. W. Vance, B. I. Lemon, J. T. Hupp, J. Phys. Chem. B 1998, 102, 10091 – 10093.en_US
dc.identifier.citedreferenceM. Chandra, A. M. Dowgiallo, K. L. Knappenberger Jr., J. Phys. Chem. C 2010, 114, 19971 – 19978.en_US
dc.identifier.citedreferenceT. Itoh, Y. Ozaki, H. Yoshikawa, T. Ihama, H. Masuhara, Appl. Phys. Lett. 2006, 88, 084102.en_US
dc.identifier.citedreferenceR. C. Johnson, J. Li, J. T. Hupp, G. C. Schatz, Chem. Phys. Lett. 2002, 356, 534 – 540.en_US
dc.identifier.citedreferenceA. Neely, C. Perry, B. Varisli, A. K. Singh, T. Arbneshi, D. Senapati, J. R. Kalluri, P. C. Ray, ACS Nano 2009, 3, 2834 – 2840.en_US
dc.identifier.citedreferenceA. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, P. C. Ray, ACS Nano 2009, 3, 1906 – 1912.en_US
dc.identifier.citedreferenceK. Aslan, M. Wu, J. R. Lakowicz, C. D. Geddes, J. Am. Chem. Soc. 2007, 129, 1524 – 1525.en_US
dc.identifier.citedreferenceK. Aslan, M. Wu, J. R. Lakowicz, C. D. Geddes, J. Fluoresc. 2007, 17, 127 – 131.en_US
dc.identifier.citedreferenceH. A. Clark, P. J. Campagnola, J. P. Wuskell, A. Lewis, L. M. Loew, J. Am. Chem. Soc. 2000, 122, 10234 – 10235.en_US
dc.identifier.citedreferenceP. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, L. M. Loew, J. Biomed. Opt. 2001, 6, 277 – 286.en_US
dc.identifier.citedreferenceH. A. Clark, M. Hoyer, M. A. Philbert, R. Kopelman, Anal. Chem. 1999, 71, 4831 – 4836.en_US
dc.identifier.citedreferenceY. E. Koo Lee, R. Smith, R. Kopelman, Annu. Rev. Anal. Chem. 2009, 2, 57 – 76.en_US
dc.identifier.citedreferenceY. E. Koo Lee, E. E. Ulbrich, G. Kim, H. Hah, C. Strollo, W. Fan, R. Gurjar, S. M. Koo, R. Kopelman, Anal. Chem. 2010, 82, 8446 – 8455.en_US
dc.identifier.citedreferenceA. Ray, Y. E. Koo Lee, T. Epstein, G. Kim, R. Kopelman, Analyst 2011, 136, 3616 – 3622.en_US
dc.identifier.citedreferenceY. Zhang, A. Dragan, C. D. Geddes, J. Phys. Chem. C 2009, 113, 12095 – 12100.en_US
dc.identifier.citedreferenceM. R. Gartia, A. Hsiao, M. Sivaguru, Y. Chen, G. L. Liu, Nanotechnology 2011, 22, 365203.en_US
dc.identifier.citedreferenceW. Denk, J. Strickler, W. Webb, Science 1990, 248, 73 – 76.en_US
dc.identifier.citedreferenceF. Helmchen, W. Denk, Nat. Methods 2005, 2, 932 – 940.en_US
dc.identifier.citedreferenceG. S. He, P. P. Markowicz, T. C. Lin, P. N. Prasad, Nature 2002, 415, 767 – 770.en_US
dc.identifier.citedreferenceI. Cohanoschi, F. E. Hernandez, J. Phys. Chem. B 2005, 109, 14506 – 14512.en_US
dc.identifier.citedreferenceH. Kano, S. Kawata, Opt. Lett. 1996, 21, 1848 – 1850.en_US
dc.identifier.citedreferenceY. Shen, J. Swiatkiewicz, T. C. Lin, P. Markowicz, P. N. Prasad, J. Phys. Chem. B 2002, 106, 4040 – 4042.en_US
dc.identifier.citedreferenceI. Gryczynski, J. Malicka, Y. Shen, Z. Gryczynski, J. R. Lakowicz, J. Phys. Chem. B 2002, 106, 2191 – 2195.en_US
dc.identifier.citedreferenceJ. Lukomska, I. Gryczynski, J. Malicka, S. Makowiec, J. R. Lakowicz, Z. Gryczynski, Biochem. Biophys. Res. Commun. 2005, 328, 78 – 84.en_US
dc.identifier.citedreferenceA. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, D. H. Olson, Phys. Rev. B 1981, 24, 4906 – 4909.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.