Show simple item record

Differentially Degradable Janus Particles for Controlled Release Applications

dc.contributor.authorHwang, Sangyeulen_US
dc.contributor.authorLahann, Joergen_US
dc.date.accessioned2012-08-09T14:56:48Z
dc.date.available2013-09-03T15:38:27Zen_US
dc.date.issued2012-07-26en_US
dc.identifier.citationHwang, Sangyeul; Lahann, Joerg (2012). "Differentially Degradable Janus Particles for Controlled Release Applications." Macromolecular Rapid Communications 33(14): 1178-1183. <http://hdl.handle.net/2027.42/92439>en_US
dc.identifier.issn1022-1336en_US
dc.identifier.issn1521-3927en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92439
dc.description.abstractJanus particles with differentially degradable compartments were prepared by electrohydrodynamic (EHD) co‐jetting and subsequent controlled crosslinking. These bicompartmental particles are composed of an interpenetrating polymer network of poly(ethylene oxide) and poly(acrylamide‐co‐acrylic acid) in one hemisphere and a crosslinked copolymer of dextran and poly(acrylamide‐co‐acrylic acid) segments in the second compartment. The compositional anisotropy caused differential hydrolytic susceptibility: Although both compartments were stable at pH 3.0, selective degradation of the PEO‐containing compartment pH 7.4 was observed wtihin 5 days. Janus particles with differentially degradable polymer compartments may be of interest for a range of oral drug delivery applications because of their propensity for decoupled release profiles. Submicrometer sized Janus particles are prepared by electrohydrodynamic co‐jetting. Two compartments in the polymer particles are designed to exhibit distinctive physicochemical properties depending on hydrolytic stabilities at different pHs. Although both compartments are stable at a low pH, one compartment is selectively degradable at physiological pH and temperature. Such pH responsive anisotropic particles are useful in targeted drug delivery.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherDrug Delivery Systemsen_US
dc.subject.otherEsterificationen_US
dc.subject.otherDegrdationen_US
dc.subject.otherCrosslinkingen_US
dc.subject.otherColloidsen_US
dc.titleDifferentially Degradable Janus Particles for Controlled Release Applicationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Chemical Engineering, Macromolecular Science and Engineering, Materials Science and Engineering, and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartments of Chemical Engineering, Macromolecular Science and Engineering, Materials Science and Engineering, and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.en_US
dc.identifier.pmid22605558en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92439/1/1178_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92439/2/marc_201200054_sm_suppl.pdf
dc.identifier.doi10.1002/marc.201200054en_US
dc.identifier.sourceMacromolecular Rapid Communicationsen_US
dc.identifier.citedreferenceJ. Choi, Y. H. Zhao, D. Y. Zhang, S. Chien, Y. H. Lo, Nano Lett. 2003, 3, 995.en_US
dc.identifier.citedreferenceS. C. Chapin, D. C. Appleyard, D. C. Pregibon, P. S. Doyle, Angew. Chem. Int. Ed. 2011, 50, 2289.en_US
dc.identifier.citedreferenceC. Casagrande, M. Veyssie, C. R. Acad. Sci. Ser. II 1988, 306, 1423.en_US
dc.identifier.citedreferenceG. Zhang, D. Y. Wang, H. Mohwald, Angew. Chem. Int. Ed. 2005, 44, 7767.en_US
dc.identifier.citedreferenceA. Kazemi, J. Lahann, Small 2008, 4, 1756.en_US
dc.identifier.citedreferenceH. Matsuyama, M. Teramoto, K. Matsui, Y. Kitamura, J. Appl. Polym. Sci. 2001, 81, 936.en_US
dc.identifier.citedreferenceS. Bhaskar, K. M. Pollock, M. Yoshida, J. Lahann, Small 2010, 6, 404.en_US
dc.identifier.citedreferenceM. Liu, C. Xie, H. Pan, J. Pan, W. Y. Lu, J. Chromatogr. A. 2006, 1129, 61.en_US
dc.identifier.citedreferenceD. W. Lim, S. Hwang, O. Uzun, F. Stellacci, J. Lahann, Macromol. Rapid Commun. 2010, 31, 176.en_US
dc.identifier.citedreferenceS. Hwang, K. H. Roh, D. W. Lim, G. Y. Wang, C. Uher, J. Lahann, Phys. Chem. Chem. Phys. 2010, 12, 11894.en_US
dc.identifier.citedreferenceK. J. Lee, S. Hwang, J. Yoon, S. Bhaskar, T. H. Park, J. Lahann, Macromol. Rapid Commun. 2011, 32, 431.en_US
dc.identifier.citedreferenceS. Bhaskar, K. H. Roh, X. W. Jiang, G. L. Baker, J. Lahann, Macromol. Rapid Commun. 2008, 29, 1655.en_US
dc.identifier.citedreferenceK. H. Roh, M. Yoshida, J. Lahann, Langmuir 2007, 23, 5683.en_US
dc.identifier.citedreferenceK. H. Roh, D. C. Martin, J. Lahann, J. Am. Chem. Soc. 2006, 128, 6796.en_US
dc.identifier.citedreferenceK. H. Roh, D. C. Martin, J. Lahann, Nat. Mater. 2005, 4, 759.en_US
dc.identifier.citedreferenceW. Z. Hong, W. W. Jiao, J. C. Hu, J. R. Zhang, C. Liu, X. M. Fu, D. Shen, B. Xia, Z. Y. Chang, J. Biol. Chem. 2005, 280, 27029.en_US
dc.identifier.citedreferenceL. A. Connal, Q. Li, J. F. Quinn, E. Tjipto, F. Caruso, G. G. Qiao, Macromolecules 2008, 41, 2620.en_US
dc.identifier.citedreferenceD. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, P. S. Doyle, Nat. Mater. 2006, 5, 365.en_US
dc.identifier.citedreferenceJ. Lahann, M. Yoshida, Acs Nano 2008, 2, 1101.en_US
dc.identifier.citedreferenceK. J. Lee, J. Yoon, J. Lahann, Curr. Opin. Colloid Interface Sci. 2011, 16, 195.en_US
dc.identifier.citedreferenceJ. Yoon, K. J. Lee, J. Lahann, J. Mater. Chem. 21, 8502.en_US
dc.identifier.citedreferenceQ. Chen, J. K. Whitmer, S. Jiang, S. C. Bae, E. Luijten, S. Granick, Science 2011, 331, 199.en_US
dc.identifier.citedreferenceQ. Chen, S. C. Bae, S. Granick, Nature 2011, 469, 381.en_US
dc.identifier.citedreferenceW. F. Paxton, S. Sundararajan, T. E. Mallouk, A. Sen, Angew. Chem. Int. Ed. 2006, 45, 5420.en_US
dc.identifier.citedreferenceT. R. Kline, W. F. Paxton, T. E. Mallouk, A. Sen, Angew. Chem. Int. Ed. 2005, 44, 744.en_US
dc.identifier.citedreferenceM. Yoshida, K. H. Roh, S. Mandal, S. Bhaskar, D. W. Lim, H. Nandivada, X. P. Deng, J. Lahann, Adv. Mater. 2009, 21, 4920.en_US
dc.identifier.citedreferenceS. H. Kim, A. Abbaspourrad, D. A. Weitz, J. Am. Chem. Soc. 2011, 133, 5516.en_US
dc.identifier.citedreferenceS. K. Smoukov, S. Gangwal, M. Marquez, O. D. Velev, Soft Matter 2009, 5, 1285.en_US
dc.identifier.citedreferenceY. Y. Hong, D. Velegol, N. Chaturvedi, A. Sen, Phys. Chem. Chem. Phys. 2010, 12, 1423.en_US
dc.identifier.citedreferenceT. Nisisako, T. Torii, T. Takahashi, Y. Takizawa, Adv. Mater. 2006, 18, 1152.en_US
dc.identifier.citedreferenceS. H. Kim, S. J. Jeon, W. C. Jeong, H. S. Park, S. M. Yang, Adv. Mater. 2008, 20, 4129.en_US
dc.identifier.citedreferenceN. Doshi, S. Mitragotri, Adv. Funct. Mater. 2009, 19, 3843.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.