Show simple item record

Pediatric Coronary Allograft Vasculopathy—A Review of Pathogenesis and Risk Factors

dc.contributor.authorSchumacher, Kurt R.en_US
dc.contributor.authorGajarski, Robert J.en_US
dc.contributor.authorUrschel, Simonen_US
dc.date.accessioned2012-08-09T14:57:11Z
dc.date.available2013-09-03T15:38:27Zen_US
dc.date.issued2012-07en_US
dc.identifier.citationSchumacher, Kurt R.; Gajarski, Robert J.; Urschel, Simon (2012). "Pediatric Coronary Allograft Vasculopathy—A Review of Pathogenesis and Risk Factors." Congenital Heart Disease (4): 312-323. <http://hdl.handle.net/2027.42/92455>en_US
dc.identifier.issn1747-079Xen_US
dc.identifier.issn1747-0803en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92455
dc.description.abstractCoronary allograft vasculopathy is the current leading cause for late graft loss following cardiac transplantation. Its pathogenesis is multifactorial, including immune, constitutional and genetic factors, metabolism, infection, as well as potential injury from routine immunosuppressive therapy. Children represent a patient group with unique differences: their pretransplant history rarely includes ischemic heart disease and risk factors for atherosclerotic heart disease, but many are presensitized from use of allograft material during reconstructive cardiac surgeries. Compared with older children and adults, infants and young children show significantly lower rates of graft vasculopathy that may be related to the relative immaturity of their immune system. This review summarizes the current concepts of coronary allograft vasculopathy derived mainly from animal models and adult clinical observations. It provides an overview of confirmed risk factors and explains their interactions. The characteristics and unique clinical findings among pediatric transplant recipients will be explored within the context of recent, albeit limited, scientific investigations.en_US
dc.publisherBlackwell Publishing Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPolymorphismsen_US
dc.subject.otherHeart Transplanten_US
dc.subject.otherCoronary Vasculopathyen_US
dc.titlePediatric Coronary Allograft Vasculopathy—A Review of Pathogenesis and Risk Factorsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCongenital Heart Center, University of Michigan, Ann Arbor, Mich, USAen_US
dc.contributor.affiliationotherPediatric Cardiology and Heart Transplant Program, University of Alberta, East Edmonton, Alberta, Canadaen_US
dc.identifier.pmid22176627en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92455/1/chd601.pdf
dc.identifier.doi10.1111/j.1747-0803.2011.00601.xen_US
dc.identifier.sourceCongenital Heart Diseaseen_US
dc.identifier.citedreferenceWelch GN, Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 1998; 338: 1042 – 1050.en_US
dc.identifier.citedreferenceFateh‐Moghadam S, Bocksch W, Wessely R, Jager G, Hetzer R, Gawaz M. Cytomegalovirus infection status predicts progression of heart‐transplant vasculopathy. Transplantation. 2003; 76: 1470 – 1474.en_US
dc.identifier.citedreferenceHussain T, Burch M, Fenton MJ, et al. Positive pretransplantation cytomegalovirus serology is a risk factor for cardiac allograft vasculopathy in children. Circulation. 2007; 115: 1798 – 1805.en_US
dc.identifier.citedreferenceSimmonds J, Fenton M, Dewar C, et al. Endothelial dysfunction and cytomegalovirus replication in pediatric heart transplantation. Circulation. 2008; 117: 2657 – 2661.en_US
dc.identifier.citedreferenceMahle WT, Fourshee MT, Naftel DM, et al. Does cytomegalovirus serology impact outcome after pediatric heart transplantation? J Heart Lung Transplant. 2009; 28: 1299 – 1305.en_US
dc.identifier.citedreferenceShirali GS, Ni J, Chinnock RE, et al. Association of viral genome with graft loss in children after cardiac transplantation. N Engl J Med. 2001; 344: 1498 – 1503.en_US
dc.identifier.citedreferenceBowles NE, Shirali GS, Chinnock RE, Rosenthal GL, Towbin JA. Association of viral genome with transplant coronary arteriopathy and graft loss in children following cardiac transplantation. J Heart Lung Transplant. 2001; 20: 198.en_US
dc.identifier.citedreferenceMoulik M, Breinholt JP, Dreyer WJ, et al. Viral endomyocardial infection is an independent predictor and potentially treatable risk factor for graft loss and coronary vasculopathy in pediatric cardiac transplant recipients. J Am Coll Cardiol. 2010; 56: 582 – 592.en_US
dc.identifier.citedreferenceGraham JA, Wilkinson RA, Hirohashi T, et al. Viral infection induces de novo lesions of coronary allograft vasculopathy through a natural killer cell‐dependent pathway. Am J Transplant. 2009; 9 ( 11 ): 2479 – 2484.en_US
dc.identifier.citedreferenceChobanian AV, Bakris GL, Black HR, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003; 289: 2560 – 2572.en_US
dc.identifier.citedreferenceLewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age‐specific relevance of usual blood pressure to vascular mortality: a meta‐analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002; 360 ( 9349 ): 1903 – 1913.en_US
dc.identifier.citedreferenceRadovancevic B, Poindexter S, Birovljev S, et al. Risk factors for development of accelerated coronary artery disease in cardiac transplant recipients. Eur J Cardiothorac Surg. 1990; 4: 309 – 312, discussion 13.en_US
dc.identifier.citedreferenceSchroeder JS, Gao SZ, Alderman EL, et al. A preliminary study of diltiazem in the prevention of coronary artery disease in heart‐transplant recipients. N Engl J Med. 1993; 328: 164 – 170.en_US
dc.identifier.citedreferenceO'Neill BJ, Pflugfelder PW, Singh NR, Menkis AH, McKenzie FN, Kostuk WJ. Frequency of angiographic detection and quantitative assessment of coronary arterial disease one and three years after cardiac transplantation. Am J Cardiol. 1989; 63: 1221 – 1226.en_US
dc.identifier.citedreferenceShaddy RE, Naftel DC, Kirklin JK, et al. Outcome of cardiac transplantation in children. Survival in a contemporary multi‐institutional experience. Pediatric Heart Transplant Study. Circulation. 1996; 94 ( 9 suppl): II69 – II73.en_US
dc.identifier.citedreferenceKuhn CC, Chinnock RE, Deming DD, Razzouk AJ, Bailey LL. The presence of cardiac allograft vasculopathy in infant and pediatric heart transplant recipients: a 10‐year intravascular ultrasound study. J Heart Lung Transplant. 2009; 28 ( 2S1 ): S124.en_US
dc.identifier.citedreferenceUrschel S, Ryan LA, Jeyakanthan M, Larsen IM, West LJ. Impact of B‐Cell memory on development of donor‐specific tolerance in ABO‐incompatible heart transplantation in early childhood. J Heart Lung Transplant. 2010; 29: 100.en_US
dc.identifier.citedreferenceRijkers GT, Sanders EAM, Breukels MA, Zegers BJM. Infant B‐cell response to polysaccharide determinants. Vaccine. 1998; 16: 1396 – 1400.en_US
dc.identifier.citedreferenceWest LJ, Pollock‐Barziv SM, Dipchand AI, et al. ABO‐incompatible heart transplantation in infants. N Engl J Med. 2001; 344: 793 – 800.en_US
dc.identifier.citedreferenceDipchand AI, Pollock BarZiv SM, Manlhiot C, West LJ, VanderVliet M, McCrindle BW. Equivalent outcomes for pediatric heart transplantation recipients: ABO‐blood group incompatible versus ABO‐compatible. Am J Transplant. 2010; 10: 389 – 397.en_US
dc.identifier.citedreferenceOgle BM, West LJ, Driscoll DJ, et al. Effacing of the T cell compartment by cardiac transplantation in infancy. J Immunol. 2006; 176 ( 3 ): 1962 – 1967.en_US
dc.identifier.citedreferenceMadhok AB, Chandrasekran A, Parnell V, Gandhi M, Chowdhury D, Pahwa S. Levels of recent thymic emigrant cells decrease in children undergoing partial thymectomy during cardiac surgery. Clin Diagn Lab Immunol. 2005; 12: 563 – 565.en_US
dc.identifier.citedreferenceChin C, Naftel D, Pahl E, et al. Cardiac re‐transplantation in pediatrics: a multi‐institutional study. J Heart Lung Transplant. 2006; 25: 1420 – 1424.en_US
dc.identifier.citedreferencePahl E, Fricker FJ, Armitage J, et al. Coronary arteriosclerosis in pediatric heart transplant survivors: limitation of long‐term survival. J Pediatr. 1990; 116: 177 – 183.en_US
dc.identifier.citedreferenceHathout E, Beeson WL, Kuhn M, et al. Cardiac allograft vasculopathy in pediatric heart transplant recipients. Transpl Int. 2006; 19: 184 – 189.en_US
dc.identifier.citedreferenceColvin‐Adams M, Agnihotri A. Cardiac allograft vasculopathy: current knowledge and future direction. Clin Transplant. 2011; 25: 175 – 184.en_US
dc.identifier.citedreferenceBillingham ME. Histopathology of graft coronary disease. J Heart Lung Transplant. 1992; 11 ( 3 pt 2): S38 – S44.en_US
dc.identifier.citedreferenceTuzcu EM, De Franco AC, Goormastic M, et al. Dichotomous pattern of coronary atherosclerosis 1 to 9 years after transplantation: insights from systematic intravascular ultrasound imaging. J Am Coll Cardiol. 1996; 27 ( 4 ): 839 – 846.en_US
dc.identifier.citedreferenceKirk R, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: thirteenth official pediatric heart transplantation report—2010. J Heart Lung Transplant. 2010; 29: 1119 – 1128.en_US
dc.identifier.citedreferencePahl ECA, Kuhn MA, eds. Allograft Vasculopathy: Detection, Risk Factors, Natural History, and Treatment. New York: Elsevier Mosby; 2007.en_US
dc.identifier.citedreferenceNagji AS, Hranjec T, Swenson BR, et al. Donor age is associated with chronic allograft vasculopathy after adult heart transplantation: implications for donor allocation. Ann Thorac Surg. 2010; 90: 168 – 175.en_US
dc.identifier.citedreferenceWilhelm MJ, Pratschke J, Beato F, et al. Activation of proinflammatory mediators in heart transplants from brain‐dead donors: evidence from a model of chronic rat cardiac allograft rejection. Transplant Proc. 2002; 34 ( 6 ): 2359 – 2360.en_US
dc.identifier.citedreferenceHerijgers P, Leunens V, Tjandra‐Maga TB, Mubagwa K, Flameng W. Changes in organ perfusion after brain death in the rat and its relation to circulating catecholamines. Transplantation. 1996; 62: 330 – 335.en_US
dc.identifier.citedreferenceAtkinson C, Varela JC, Tomlinson S. Complement‐dependent inflammation and injury in a murine model of brain dead donor hearts. Circ Res. 2009; 105: 1094 – 1101.en_US
dc.identifier.citedreferenceSzabo G, Buhmann V, Bahrle S, Vahl CF, Hagl S. Brain death impairs coronary endothelial function. Transplantation. 2002; 73: 1846 – 1848.en_US
dc.identifier.citedreferenceStoica SC, Atkinson C, Satchithananda DK, et al. Endothelial activation in the transplanted human heart from organ retrieval to 3 months after transplantation: an observational study. J Heart Lung Transplant. 2005; 24: 593 – 601.en_US
dc.identifier.citedreferenceValantine HA. Cardiac allograft vasculopathy: central role of endothelial injury leading to transplant “atheroma.” Transplantation. 2003; 76: 891 – 899.en_US
dc.identifier.citedreferenceCurrie M, Zaki AM, Nejat S, Hirsch GM, Lee TD. Immunologic targets in the etiology of allograft vasculopathy: endothelium versus media. Transpl Immunol. 2008; 19: 120 – 126.en_US
dc.identifier.citedreferenceKing CL, Devitt JJ, Lee TD, Hancock Friesen CL. Neutrophil mediated smooth muscle cell loss precedes allograft vasculopathy. J Cardiothorac Surg. 2010; 5: 52.en_US
dc.identifier.citedreferenceDay JD, Rayburn BK, Gaudin PB, et al. Cardiac allograft vasculopathy: the central pathogenetic role of ischemia‐induced endothelial cell injury. J Heart Lung Transplant. 1995; 14 ( 6 pt 2): S142 – S149.en_US
dc.identifier.citedreferenceVessie EL, Hirsch GM, Lee TD. Aortic allograft vasculopathy is mediated by CD8(+) T cells in Cyclosporin A immunosuppressed mice. Transpl Immunol. 2005; 15 ( 1 ): 35 – 44.en_US
dc.identifier.citedreferenceWehner JR, Fox‐Talbot K, Halushka MK, Ellis C, Zachary AA, Baldwin WM 3rd. B cells and plasma cells in coronaries of chronically rejected cardiac transplants. Transplantation. 2010; 89: 1141 – 1148.en_US
dc.identifier.citedreferenceCunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 2005; 85 ( 1 ): 9 – 23.en_US
dc.identifier.citedreferenceTakumi T, Yang EH, Mathew V, et al. Coronary endothelial dysfunction is associated with a reduction in coronary artery compliance and an increase in wall shear stress. Heart. 2010; 96: 773 – 778.en_US
dc.identifier.citedreferenceSun N, Wood NB, Hughes AD, Thom SA, Yun Xu X. Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model. Am J Physiol Heart Circ Physiol. 2007; 292 ( 6 ): H3148 – H3157.en_US
dc.identifier.citedreferenceUrschel S, Altamirano‐Diaz LA, West LJ. Immunosuppression armamentarium in 2010: mechanistic and clinical considerations. Pediatr Clin North Am. 2010; 57 ( 2 ): 433 – 457. Table of contents.en_US
dc.identifier.citedreferenceAddonizio LJ, Hsu DT, Douglas JF, et al. Decreasing incidence of coronary disease in pediatric cardiac transplant recipients using increased immunosuppression. Circulation. 1993; 88 ( 5 pt 2): II224 – II229.en_US
dc.identifier.citedreferenceEisen HJ, Kobashigawa J, Keogh A, et al. Three‐year results of a randomized, double‐blind, controlled trial of mycophenolate mofetil versus azathioprine in cardiac transplant recipients. J Heart Lung Transplant. 2005; 24: 517 – 525.en_US
dc.identifier.citedreferenceEisen HJ, Tuzcu EM, Dorent R, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac‐transplant recipients. N Engl J Med. 2003; 349: 847 – 858.en_US
dc.identifier.citedreferenceMancini D, Pinney S, Burkhoff D, et al. Use of rapamycin slows progression of cardiac transplantation vasculopathy. Circulation. 2003; 108: 48 – 53.en_US
dc.identifier.citedreferenceNwakanma LU, Williams JA, Weiss ES, Russell SD, Baumgartner WA, Conte JV. Influence of pretransplant panel‐reactive antibody on outcomes in 8160 heart transplant recipients in recent era. Ann Thorac Surg. 2007; 84 ( 5 ): 1556 – 1562, discussion 62–63.en_US
dc.identifier.citedreferenceGirnita AL, Webber SA, Zeevi A. Anti‐HLA alloantibodies in pediatric solid organ transplantation. Pediatr Transplant. 2006; 10: 146 – 153.en_US
dc.identifier.citedreferenceDi Filippo S, Girnita A, Webber SA, et al. Impact of ELISA‐detected anti‐HLA antibodies on pediatric cardiac allograft outcome. Hum Immunol. 2005; 66: 513 – 518.en_US
dc.identifier.citedreferenceFeingold B, Bowman P, Zeevi A, et al. Survival in allosensitized children after listing for cardiac transplantation. J Heart Lung Transplant. 2007; 26: 565 – 571.en_US
dc.identifier.citedreferenceIrving C, Hasan A, Carter V, Gennery A, Parry G, Kirk R. Association between donor‐specific HLA antibodies and adverse outcome following paediatric cardiac transplantation. J Heart Lung Transplant. 2009; 28 ( 2 ): S232.en_US
dc.identifier.citedreferenceRossano JW, Morales DL, Denfield SW, et al. Impact of panel‐reactive antibodies on long‐term outcome in pediatric heart transplant patients: an analysis of the united network of organ sharing database. J Heart Lung Transplant. 2009; 28 ( 2 ): S232.en_US
dc.identifier.citedreferenceUrschel S, Campbell PM, Meyer SR, et al. Absence of donor‐specific anti‐HLA antibodies after ABO‐incompatible heart transplantation in infancy: altered immunity or age? Am J Transplant. 2010; 10: 149 – 156.en_US
dc.identifier.citedreferenceKuhn MA, Jutzy KR, Deming DD, et al. The medium‐term findings in coronary arteries by intravascular ultrasound in infants and children after heart transplantation. J Am Coll Cardiol. 2000; 36 ( 1 ): 250 – 254.en_US
dc.identifier.citedreferenceAmeduri R, Zheng J, Schechtman K, et al. Abstract 13877: has late rejection decreased in pediatric heart transplantation in the current era? A multi‐institutional study. Circulation. 2010; 122 ( 25 suppl): A13877.en_US
dc.identifier.citedreferencePahl E, Naftel DC, Kuhn MA, et al. The impact and outcome of transplant coronary artery disease in a pediatric population: a 9‐year multi‐institutional study. J Heart Lung Transplant. 2005; 24: 645 – 651.en_US
dc.identifier.citedreferenceMulla NF, Johnston JK, Vander Dussen L, et al. Late rejection is a predictor of transplant coronary artery disease in children. J Am Coll Cardiol. 2001; 37 ( 1 ): 243 – 250.en_US
dc.identifier.citedreferenceMahle WT, Vincent RN, Berg AM, Kanter KR. Pravastatin therapy is associated with reduction in coronary allograft vasculopathy in pediatric heart transplantation. J Heart Lung Transplant. 2005; 24: 63 – 66.en_US
dc.identifier.citedreferenceNicolas RT, Kort HW, Balzer DT, et al. Surveillance for transplant coronary artery disease in infant, child and adolescent heart transplant recipients: an intravascular ultrasound study. J Heart Lung Transplant. 2006; 25: 921 – 927.en_US
dc.identifier.citedreferenceZhang Q, Liang LW, Gjertson DW, et al. Development of posttransplant antidonor HLA antibodies is associated with acute humoral rejection and early graft dysfunction. Transplantation. 2005; 79: 591 – 598.en_US
dc.identifier.citedreferenceHolweg CT, Weimar W, Uitterlinden AG, Baan CC. Clinical impact of cytokine gene polymorphisms in heart and lung transplantation. J Heart Lung Transplant. 2004; 23: 1017 – 1026.en_US
dc.identifier.citedreferenceImhof BA, Dunon D. Leukocyte migration and adhesion. Adv Immunol. 1995; 58: 345 – 416.en_US
dc.identifier.citedreferenceBorozdenkova S, Smith J, Marshall S, Yacoub M, Rose M. Identification of ICAM‐1 polymorphism that is associated with protection from transplant associated vasculopathy after cardiac transplantation. Hum Immunol. 2001; 62: 247 – 255.en_US
dc.identifier.citedreferenceNeumann FJ, Ott I, Gawaz M, et al. Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation. 1995; 92: 748 – 755.en_US
dc.identifier.citedreferenceKharazmi A, Nielsen H, Rechnitzer C, Bendtzen K. Interleukin 6 primes human neutrophil and monocyte oxidative burst response. Immunol Lett. 1989; 21: 177 – 184.en_US
dc.identifier.citedreferenceLou H, Kodama T, Wang YN, Katz N, Ramwell P, Foegh ML. L‐arginine prevents heart transplant arteriosclerosis by modulating the vascular cell proliferative response to insulin‐like growth factor‐I and interleukin‐6. J Heart Lung Transplant. 1996; 15: 1248 – 1257.en_US
dc.identifier.citedreferenceGanter U, Arcone R, Toniatti C, Morrone G, Ciliberto G. Dual control of C‐reactive protein gene expression by interleukin‐1 and interleukin‐6. EMBO J. 1989; 8 ( 12 ): 3773 – 3779.en_US
dc.identifier.citedreferenceAli MH, Schlidt SA, Chandel NS, Hynes KL, Schumacker PT, Gewertz BL. Endothelial permeability and IL‐6 production during hypoxia: role of ROS in signal transduction. Am J Physiol. 1999; 277 ( 5 pt 1): L1057 – L1065.en_US
dc.identifier.citedreferenceFishman D, Faulds G, Jeffery R, et al. The effect of novel polymorphisms in the interleukin‐6 (IL‐6) gene on IL‐6 transcription and plasma IL‐6 levels, and an association with systemic‐onset juvenile chronic arthritis. J Clin Invest. 1998; 102: 1369 – 1376.en_US
dc.identifier.citedreferenceDensem CG, Ray M, Hutchinson IV, Yonan N, Brooks NH. Interleukin‐6 polymorphism: a genetic risk factor for cardiac transplant related coronary vasculopathy? J Heart Lung Transplant. 2005; 24: 559 – 565.en_US
dc.identifier.citedreferenceHolweg CT, Baan CC, Balk AH, et al. The transforming growth factor‐beta1 codon 10 gene polymorphism and accelerated graft vascular disease after clinical heart transplantation. Transplantation. 2001; 71: 1463 – 1467.en_US
dc.identifier.citedreferenceLawrence DA. Transforming growth factor‐beta: a general review. Eur Cytokine Netw. 1996; 7: 363 – 374.en_US
dc.identifier.citedreferenceDensem CG, Hutchinson IV, Yonan N, Brooks NH. Donor and recipient‐transforming growth factor‐beta 1 polymorphism and cardiac transplant‐related coronary artery disease. Transpl Immunol. 2004; 13: 211 – 217.en_US
dc.identifier.citedreferenceDensem CG, Hutchinson IV, Yonan N, Brooks NH. Influence of tumor necrosis factor‐alpha gene‐308 polymorphism on the development of coronary vasculopathy after cardiac transplantation. J Heart Lung Transplant. 2001; 20: 1265 – 1273.en_US
dc.identifier.citedreferenceWang P, Ba ZF, Chaudry IH. Administration of tumor necrosis factor‐alpha in vivo depresses endothelium‐dependent relaxation. Am J Physiol. 1994; 266 ( 6 pt 2): H2535 – H2541.en_US
dc.identifier.citedreferenceAndreassen AK, Nordoy I, Simonsen S, et al. Levels of circulating adhesion molecules in congestive heart failure and after heart transplantation. Am J Cardiol. 1998; 81: 604 – 608.en_US
dc.identifier.citedreferenceTernstrom L, Jeppsson A, Ricksten A, Nilsson F. Tumor necrosis factor gene polymorphism and cardiac allograft vasculopathy. J Heart Lung Transplant. 2005; 24: 433 – 438.en_US
dc.identifier.citedreferenceBenza RL, Passineau MJ, Anderson PG, Barchue JP, George JF. The role of fibrinolytic genes and proteins in the development of allograft vascular disease. J Heart Lung Transplant. 2011; 30: 935 – 944.en_US
dc.identifier.citedreferenceBenza RL, Grenett HE, Bourge RC, et al. Gene polymorphisms for plasminogen activator inhibitor‐1/tissue plasminogen activator and development of allograft coronary artery disease. Circulation. 1998; 98: 2248 – 2254.en_US
dc.identifier.citedreferenceDegen SJ, Rajput B, Reich E. The human tissue plasminogen activator gene. J Biol Chem. 1986; 261 ( 15 ): 6972 – 6985.en_US
dc.identifier.citedreferenceDawson S, Hamsten A, Wiman B, Henney A, Humphries S. Genetic variation at the plasminogen activator inhibitor‐1 locus is associated with altered levels of plasma plasminogen activator inhibitor‐1 activity. Arterioscler Thromb. 1991; 11: 183 – 190.en_US
dc.identifier.citedreferenceLemstrom KB, Nykanen AI, Tikkanen JM, et al. Role of angiogenic growth factors in transplant coronary artery disease. Ann Med. 2004; 36: 184 – 193.en_US
dc.identifier.citedreferenceTambur AR, Pamboukian S, Costanzo MR, Heroux A. Genetic polymorphism in platelet‐derived growth factor and vascular endothelial growth factor are significantly associated with cardiac allograft vasculopathy. J Heart Lung Transplant. 2006; 25: 690 – 698.en_US
dc.identifier.citedreferenceShahbazi M, Fryer AA, Pravica V, et al. Vascular endothelial growth factor gene polymorphisms are associated with acute renal allograft rejection. J Am Soc Nephrol. 2002; 13 ( 1 ): 260 – 264.en_US
dc.identifier.citedreferenceNykanen AI, Krebs R, Tikkanen JM, et al. Combined vascular endothelial growth factor and platelet‐derived growth factor inhibition in rat cardiac allografts: beneficial effects on inflammation and smooth muscle cell proliferation. Transplantation. 2005; 79: 182 – 189.en_US
dc.identifier.citedreferenceYousufuddin M, Yamani MH. The renin‐angiotensin hypothesis for the pathogenesis of cardiac allograft vasculopathy. Int J Cardiol. 2004; 95 ( 2–3 ): 123 – 127.en_US
dc.identifier.citedreferenceErinc K, Yamani MH, Starling RC, et al. The effect of combined Angiotensin‐converting enzyme inhibition and calcium antagonism on allograft coronary vasculopathy validated by intravascular ultrasound. J Heart Lung Transplant. 2005; 24: 1033 – 1038.en_US
dc.identifier.citedreferenceRichter MH, Richter HR, Olbrich HG, Mohr FW. Two good reasons for an angiotensin‐II type 1 receptor blockade with losartan after cardiac transplantation: reduction of incidence and severity of transplant vasculopathy. Transpl Int. 2003; 16 ( 1 ): 26 – 32.en_US
dc.identifier.citedreferenceTiret L, Rigat B, Visvikis S, et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I‐converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet. 1992; 51: 197 – 205.en_US
dc.identifier.citedreferenceArbustini E, Grasso M, Fasani R, et al. Angiotensin converting enzyme gene deletion allele is independently and strongly associated with coronary atherosclerosis and myocardial infarction. Br Heart J. 1995; 74: 584 – 591.en_US
dc.identifier.citedreferenceCambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin‐converting enzyme is a potent risk factor for myocardial infarction. Nature. 1992; 359 ( 6396 ): 641 – 644.en_US
dc.identifier.citedreferencePethig K, Heublein B, Hoffmann A, Borlak J, Wahlers T, Haverich A. ACE‐gene polymorphism is associated with the development of allograft vascular disease in heart transplant recipients. J Heart Lung Transplant. 2000; 19: 1175 – 1182.en_US
dc.identifier.citedreferenceCunningham DA, Crisp SJ, Barbir M, Lazem F, Dunn MJ, Yacoub MH. Donor ACE gene polymorphism: a genetic risk factor for accelerated coronary sclerosis following cardiac transplantation. Eur Heart J. 1998; 19: 319 – 325.en_US
dc.identifier.citedreferenceKobashigawa JA, Katznelson S, Laks H, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med. 1995; 333: 621 – 627.en_US
dc.identifier.citedreferenceSeipelt IM, Crawford SE, Rodgers S, et al. Hypercholesterolemia is common after pediatric heart transplantation: initial experience with pravastatin. J Heart Lung Transplant. 2004; 23: 317 – 322.en_US
dc.identifier.citedreferenceSingh TP, Naftel DC, Webber S, et al. Hyperlipidemia in children after heart transplantation. J Heart Lung Transplant. 2006; 25: 1199 – 1205.en_US
dc.identifier.citedreferenceEscobar A, Ventura HO, Stapleton DD, et al. Cardiac allograft vasculopathy assessed by intravascular ultrasonography and nonimmunologic risk factors. Am J Cardiol. 1994; 74: 1042 – 1046.en_US
dc.identifier.citedreferenceStampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med. 1991; 325: 373 – 381.en_US
dc.identifier.citedreferenceHedman M, Pahlman R, Sundvall J, et al. Low HDL‐C predicts the onset of transplant vasculopathy in pediatric cardiac recipients on pravastatin therapy. Pediatr Transplant. 2007; 11: 481 – 490.en_US
dc.identifier.citedreferenceMalinow MR. Hyperhomocyst(e)inemia. A common and easily reversible risk factor for occlusive atherosclerosis. Circulation. 1990; 81 ( 6 ): 2004 – 2006.en_US
dc.identifier.citedreferenceGenest JJ Jr, McNamara JR, Salem DN, Wilson PW, Schaefer EJ, Malinow MR. Plasma homocyst(e)ine levels in men with premature coronary artery disease. J Am Coll Cardiol. 1990; 16 ( 5 ): 1114 – 1119.en_US
dc.identifier.citedreferenceMayer EL, Jacobsen DW, Robinson K. Homocysteine and coronary atherosclerosis. J Am Coll Cardiol. 1996; 27: 517 – 527.en_US
dc.identifier.citedreferenceCook RC, Tupper JK, Parker S, et al. Effect of immunosuppressive therapy, serum creatinine, and time after transplant on plasma total homocysteine in patients following heart transplantation. J Heart Lung Transplant. 1999; 18: 420 – 424.en_US
dc.identifier.citedreferenceParisi F, Kost‐Byerly S, Saponara I, Di Donato R, Di Liso G. Elevated plasma homocysteine concentrations after pediatric heart transplantations. Transpl Int. 2000; 13 (suppl 1 ): S235 – S239.en_US
dc.identifier.citedreferenceKutschka I, Pethig K, Harringer W, Haverich A, Struber M. Increased plasma homocysteine concentrations accelerate cardiac allograft vasculopathy. J Heart Lung Transplant. 2004; 23: 1260 – 1265.en_US
dc.identifier.citedreferenceMiner SE, Cole DE, Evrovski J, Verma A, Daly PA, Ross HJ. Hyperhomocysteinemia and transplant coronary artery disease in cardiac transplant recipients. Clin Transplant. 2001; 15: 258 – 262.en_US
dc.identifier.citedreferenceTawakol A, Omland T, Gerhard M, Wu JT, Creager MA. Hyperhomocyst(e)inemia is associated with impaired endothelium‐dependent vasodilation in humans. Circulation. 1997; 95 ( 5 ): 1119 – 1121.en_US
dc.identifier.citedreferenceParisi F, Danesi H, Di Ciommo V, et al. Treatment of hyperhomocysteinemia in pediatric heart transplant recipients. J Heart Lung Transplant. 2003; 22: 778 – 783.en_US
dc.identifier.citedreferencePotena L, Grigioni F, Magnani G, et al. Homocysteine‐lowering therapy and early progression of transplant vasculopathy: a prospective, randomized, IVUS‐based study. Am J Transplant. 2005; 5 ( 9 ): 2258 – 2264.en_US
dc.identifier.citedreferencePotena L, Grigioni F, Masetti M, et al. Long‐term effect of folic acid therapy in heart transplant recipients: follow‐up analysis of a randomized study. Transplantation. 2008; 85: 1146 – 1150.en_US
dc.identifier.citedreferenceChen R, Xiong S, Yang Y, Fu W, Wang Y, Ge J. The relationship between human cytomegalovirus infection and atherosclerosis development. Mol Cell Biochem. 2003; 249 ( 1–2 ): 91 – 96.en_US
dc.identifier.citedreferenceGrattan MT, Moreno‐Cabral CE, Starnes VA, Oyer PE, Stinson EB, Shumway NE. Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. JAMA. 1989; 261: 3561 – 3566.en_US
dc.identifier.citedreferenceSambiase NV, Higuchi ML, Nuovo G, et al. CMV and transplant‐related coronary atherosclerosis: an immunohistochemical, in situ hybridization, and polymerase chain reaction in situ study. Mod Pathol. 2000; 13: 173 – 179.en_US
dc.identifier.citedreferenceValantine HA. Role of CMV in transplant coronary artery disease and survival after heart transplantation. Transpl Infect Dis. 1999; 1 (suppl 1 ): 25 – 30.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.