Show simple item record

The automation design advisor tool (ADAT): Development and validation of a model‐based tool to support flight deck automation design for nextgen operations

dc.contributor.authorSebok, Angeliaen_US
dc.contributor.authorWickens, Christopheren_US
dc.contributor.authorSarter, Nadineen_US
dc.contributor.authorQuesada, Staceyen_US
dc.contributor.authorSocash, Connieen_US
dc.contributor.authorAnthony, Brianen_US
dc.date.accessioned2012-08-09T14:57:13Z
dc.date.available2013-10-18T17:47:30Zen_US
dc.date.issued2012-09en_US
dc.identifier.citationSebok, Angelia; Wickens, Christopher; Sarter, Nadine; Quesada, Stacey; Socash, Connie; Anthony, Brian (2012). "The automation design advisor tool (ADAT): Development and validation of a model‐based tool to support flight deck automation design for nextgen operations." Human Factors and Ergonomics in Manufacturing & Service Industries 22(5): 378-394. <http://hdl.handle.net/2027.42/92456>en_US
dc.identifier.issn1090-8471en_US
dc.identifier.issn1520-6564en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92456
dc.description.abstractNextGen aviation will require an even greater reliance on automation than current‐day operations. Therefore, systems with problems in human–automation interaction must be identified and resolved early, well before they are introduced into operation. This paper describes a research and software development effort to build a prototype automation design advisor tool (ADAT) for flight deck automation. This tool uses models of human performance to identify perceptual, cognitive, and action‐related inefficiencies in the design of flight management systems. Aviation designers can use the tool to evaluate and compare potential flight deck automation designs and to identify potential human–automation interaction concerns. Designers can compare different flight management systems in terms of specific features and their ability to support pilot performance. ADAT provides specific, research‐based guidance for resolving problematic design issues. It was specifically designed to be flexible enough for both current‐day technologies and revolutionary NextGen designs. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherAutomationen_US
dc.subject.otherModelingen_US
dc.subject.otherInteractionen_US
dc.subject.otherNextGenen_US
dc.subject.otherCognitiveen_US
dc.titleThe automation design advisor tool (ADAT): Development and validation of a model‐based tool to support flight deck automation design for nextgen operationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Industrial and Operations Engineering, Center for Ergonomics, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherAlion Science and Technology, 4949 Pearl East Circle, Suite 200, Boulder, CO 80301en_US
dc.contributor.affiliationotherAlion Science and Technology, MA&D Operation, Boulder, Colorado, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92456/1/20389_ftp.pdf
dc.identifier.doi10.1002/hfm.20389en_US
dc.identifier.sourceHuman Factors and Ergonomics in Manufacturing & Service Industriesen_US
dc.identifier.citedreferenceSlamecka, N. J., & Graf, P. ( 1978 ). The generation effect: Delineation of a phenomenon. Journal of Experimental Psychology: Human Learning and Memory, 4 ( 6 ), 592 – 604.en_US
dc.identifier.citedreferenceSAE International.( 2001 ). Human Interface criteria for vertical situation awareness displays. ARP 5430. SAE.en_US
dc.identifier.citedreferenceSarter, N., Wickens, C. D., & Sebok, A. ( 2011 ). Proactive system design and evaluation: supporting pilot‐automation interaction through empirical and modeling analyses. NASA Final Report (Contract NNX07AT79A).en_US
dc.identifier.citedreferenceSarter, N., & Woods, D. D. ( 2000 ). Team play with a powerful and independent agent: A full‐mission simulation study. Human Factors 42 ( 3 ), 390 – 402.en_US
dc.identifier.citedreferenceSarter, N. B., Mumaw, R. J., & Wickens, C. D. ( 2007 ). Pilots' monitoring strategies and performance on highly automated flight decks: An empirical study combining behavioral and eye tracking data. Human Factors, 49, 347 – 357.en_US
dc.identifier.citedreferenceSarter, N. B., & Woods, D. D. ( 1992 ). Pilot interaction with cockpit automation: Operational experiences with the flight management system (FMS). International Journal of Aviation Psychology, 2 ( 4 ), 303 – 321.en_US
dc.identifier.citedreferenceSarter, N. B., & Woods, D. D. ( 1994 ). Pilot interaction with cockpit automation: II. An experimental study of pilots' models and awareness of the flight management system. International Journal of Aviation Psychology, 4, 1 – 28.en_US
dc.identifier.citedreferenceSherry, L., & Polson, P. G. ( 1999 ). Shared models of FMS vertical guidance. International Journal of Aviation Psychology, 9, 139 – 154.en_US
dc.identifier.citedreferenceSherry, L., Feary, M., Polson, P., & Fennell, K. ( 2003 ). Drinking from the fire hose: Why the flight management system can be hard to train and difficult to Use. NASA Technical Report: NASA/TM‐2004–212274.en_US
dc.identifier.citedreferenceSherry, L., Fennell, K., Feary, M., & Polson, P. ( 2006 ). Analysis of ease‐of‐use and ease‐of‐learning of a modern flight management system. AIAA Journal of Aerospace Computing, Information, and Communication, 3, 177 – 186.en_US
dc.identifier.citedreferenceSherry, L., Fennell, K., Feary, M., & Polson, P. ( 2006b ). Analysis of flight management system messages. AIAA Journal of Aircraft, 43, 1372 – 1376.en_US
dc.identifier.citedreferenceSociety of Automotive Engineers.( 2007 ). Aerospace recommended practice: Flight Deck Alerting System (FAS). SAE ARP4102/4.en_US
dc.identifier.citedreferenceSteelman‐Allen, K. S., McCarley, J. S., Wickens, C., Sebok, A., & Bzostek, J. ( 2009, October). N‐SEEV: A computational model of attention and noticing. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 53, 774 – 778.en_US
dc.identifier.citedreferenceTversky, A. ( 1977 ). Features of similarity. Psychological Review, 84, 327 – 352.en_US
dc.identifier.citedreferenceVakil, S., Hansman, R. J., & Midkiff, A. ( 1995 ). Impact of vertical situation information on vertical mode awareness in advanced autoflight systems. 14th AIAA/IEEE Digital Avionics Systems Conference, November 1995.en_US
dc.identifier.citedreferenceWalker, G. H., Stanton, N. A., Salmon, P. M., Jenkins, D. P., & Rafferty, L. ( 2010 ). Translating concepts of complexity to the field of ergonomics. Ergonomics, 53 ( 10 ), 1175 – 1186.en_US
dc.identifier.citedreferenceWickens, C., Hooey, B., Gore, B., Sebok, A., & Koenecke, C. ( 2009 ). Identifying black swans in NextGen: Predicting human performance in off‐nominal conditions. Human Factors, 51, 638 – 651.en_US
dc.identifier.citedreferenceWickens, C. D. ( 2003 ). Aviation displays. In P. Tsang & M. Vidulich (Eds.), Principles and practice of aviation psychology (pp. 147 – 199 ). Mahwah, NJ: Lawrence Erlbaum.en_US
dc.identifier.citedreferenceWickens, C. D. ( 2010 ). The psychology of aviation surprise: An 8‐year update regarding the noticing of black swans [Keynote address]. International Symposium on Aviation Psychology, Wright State University, Dayton, Ohio.en_US
dc.identifier.citedreferenceWickens, C. D., & Alexander, A. L. ( 2009 ). Attentional tunneling and task management in synthetic vision displays. International Journal of Aviation Psychology, 19, 182 – 189.en_US
dc.identifier.citedreferenceWickens, C. D., & Carswell, C. M. ( 1995 ). The proximity compatibility principle: Its psychological foundation and relevance to display design. Human Factors, 37 ( 3 ), 473 – 494.en_US
dc.identifier.citedreferenceWickens, C. D., & Hollands, J. ( 2000 ). Engineering psychology and human performance ( 3rd ed. ). Upper Saddle River, NJ: Prentice Hall.en_US
dc.identifier.citedreferenceWickens, C. D., & McCarley, J. M. ( 2008 ). Applied attention theory. Boca Raton, FL: CRC Press / Taylor & Francis.en_US
dc.identifier.citedreferenceWickens, C. D., Goh, J., Helleberg, J., Horrey, W., & Talleur, D. A. ( 2003 ). Attentional models of multi‐task pilot performance using advanced display technology. Human Factors, 45 ( 3 ), 360 – 380.en_US
dc.identifier.citedreferenceWickens, C. D., McCarley, J. M., Steelman‐Allen, K., Sebok, A., Bzostek, J., & Sarter, N. ( 2009 ). NT‐SEEV: A model of attention capture and noticing on the flight deck. Proceedings of the 53rd Annual Meeting of the Human Factors and Ergonomics Society, October 19–23, 2009, San Antonio, Texas.en_US
dc.identifier.citedreferenceWickens, C. D., Vincow, M. A., Schopper, A. W., & Lincoln, J. E. ( 1997 ). Computational models of human performance in the design and layout of controls and displays (CSERIAC SOAR Report 97–22). Wright Patterson Air Force Base, OH: Crew System Ergonomics Information Analysis Center.en_US
dc.identifier.citedreferenceWiener, E. L. ( 1989 ). Cockpit automation. In E. L. Wiener & D. C. Nagel (Eds.), Human factors in aviation (pp. 433 – 461 ). New York: Academic Press.en_US
dc.identifier.citedreferenceJohn, B. E., Blackmon, M. H., Polson, P. G., Fennell, K., & Teo, L. H. ( 2009 ). Rapid theory prototyping: An example of an aviation task. Proceedings of the Human Factors and Ergonomics Society the 53rd Annual Meeting, October 19–23, 2009. Santa Monica, CA: Human Factors and Ergonomics Society.en_US
dc.identifier.citedreferenceJoint Planning and Development Office (JPDO).( 2010, April 10). Concept of operations for the next generation air transportation system. Version 3.1. Washington, DC: Federal Aviation Administration.en_US
dc.identifier.citedreferenceAbbott, K., Slotte, S., Stimson, D., Bollin, E., Hecht, S., & Imrich, T. ( 1996 ). The interfaces between flightcrews and modern flight deck systems (Federal Aviation Administration Human Factors Team Report). Washington, DC: Federal Aviation Administration.en_US
dc.identifier.citedreferenceAhlstrom, V., & Longo, K. ( 2003 ). Human Factors Design Standard (HF‐STD‐001). Atlantic City International Airport, NJ: Federal Aviation Administration William J. Hughes Technical Center.en_US
dc.identifier.citedreferenceBallard, D. H., Hayhoe, M. M., & Pelz, J. B. ( 1995 ). Memory representation in natural tasks. Journal of Cognitive Neuroscience, 7 ( 1 ), 66 – 86.en_US
dc.identifier.citedreferenceBlackmon, M. H., Mandalia, D. R., Polson, P. G., & Kitajima, M. ( 2007 ). Automating usability evaluation: Cognitive walkthrough for the web puts LSA to work on real world HCI design problems. In T. K. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook of latent semantic analysis (pp. 345 – 375 ). Mahwah, NJ: Lawrence Erlbaum.en_US
dc.identifier.citedreferenceBoag, C., Neal, A., Loft, S., & Halford, G. S. ( 2006 ). An analysis of relational complexity in an air traffic control conflict detection task. Ergonomics, 49 ( 14 ), 1508 – 1526.en_US
dc.identifier.citedreferenceBoorman, D. J., & Mumaw, R. J. ( 2004 ). A new autoflight/FMS interface: Guiding design principles. Proceedings of the International Conference on Human‐Computer Interaction in Aeronautics, Toulouse, France.en_US
dc.identifier.citedreferenceCard, S., Moran, T., & Newell, A. ( 1983 ). The psychology of human‐computer interaction. Hillsdale, NJ: Lawrence Erlbaum.en_US
dc.identifier.citedreferenceDegani, A. ( 2004 ). Taming Hal: Designing interfaces beyond 2001. New York: Palgrave Macmillan.en_US
dc.identifier.citedreferenceDriskell, J. E., & Salas, E. ( 1996 ). Stress and human performance. Mahwah, NJ: Lawrence Erlbaum.en_US
dc.identifier.citedreferenceEuropean Aviation Safety Agency.( 2007 ). Certification specifications for large aeroplanes. CS‐25. Book 2: Acceptable Means of Compliance.en_US
dc.identifier.citedreferenceFennell, K., Sherry, L., Roberts, R. J. Jr., & Feary, M. ( 2006 ). Difficult access: The impact of recall steps on flight management system errors. International Journal of Aviation Psychology, 16 ( 2 ), 175 – 196.en_US
dc.identifier.citedreferenceFiorino, F. ( 2006 ). TCAS a key factor in Amazon midair. Aviation Week and Space Technology. October 8, 2006.en_US
dc.identifier.citedreferenceFitts, P. M. ( 1954 ). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381 – 391.en_US
dc.identifier.citedreferenceFunk, K., Lyall, B., Wilson, J., Vint, R., Niemczyk, M., Suroteguh, C., & Owen, G. ( 1999 ). Flight deck automation issues. International Journal of Aviation Psychology, 9 ( 2 ), 109 – 123.en_US
dc.identifier.citedreferenceHalford, G. S., Baker, R., McCredden, J. E., & Bain, J. D. ( 2005 ). How many variables can humans process ? Psychological Science, 16 ( 1 ), 70 – 76.en_US
dc.identifier.citedreferenceHutchins, E. ( 1996 ). The integrated mode management interface. Final report for grant #NCC 2‐591 for NASA. Ames, IA: Aviation Safety / Automation Program.en_US
dc.identifier.citedreferenceJacobsen, A., Chen, S., & Widemann, J. ( 2000 ). Vertical situation awareness displays. Proceedings Royal Aeronautical Society Conference on Situation Awareness, London, UK.en_US
dc.identifier.citedreferenceJavaux, D. ( 2002 ). A method for predicting errors when interacting with finite state systems. How implicit learning shapes the user's knowledge of a system. Reliability Engineering and System Safety. 75 ( 2 ), 147 – 165.en_US
dc.identifier.citedreferenceKeith, N., & Frese, M. ( 2008 ). Effectiveness of error management training: A meta‐analysis. Journal of Applied Psychology. 93 ( 1 ), 59 – 69.en_US
dc.identifier.citedreferenceLandauer, T. K. ( 1995 ). The trouble with computers: Usefulness, usability, and productivity. Cambridge, MA: MIT Press.en_US
dc.identifier.citedreferenceMcCarley, J., Wickens, C., Sebok, A., Steelman‐Allen, K., Bzostek, J., & Koenecke, C. ( 2009 ). Control of attention: Modeling the effects of stimulus characteristics, task demands, and individual differences. NASA Final Report for NASA ROA 2007 Integrated Intelligent Flight Deck Technologies, Contract No. NNX07AV97A.en_US
dc.identifier.citedreferenceMumaw, R., Boorman, D. J., & Prada, R. L. ( 2006 ). Experimental evaluation of a new autoflight interface. Proceedings HCI‐Aero 2006, International Conference on Human Computer Interaction, September 20–22, 2006, Seattle, Washington.en_US
dc.identifier.citedreferenceNextGen Integration and Implementation Office.( 2010 ). NextGen implementation plan. Washington, DC: Federal Aviation Administration.en_US
dc.identifier.citedreferenceNikolic, M., Orr, J., & Sarter, N. ( 2004 ). Why pilots miss the green box: How display context undermines attention capture. International Journal of Aviation Psychology, 14 ( 1 ), 39 – 52.en_US
dc.identifier.citedreferencePolson, P. G., Irving, S., & Irving, J. E. ( 1995 ). Applications of formal models of human‐computer interaction to training and the use of the control and display unit [Final report]. Washington, DC: Federal Aviation Administration.en_US
dc.identifier.citedreferencePrada, L. R., Mumaw, R., Boehm‐Davis, D., & Boorman, D. ( 2006 ). Testing Boeing's Flight Deck of the Future: An experimental comparison of prototype and current automated flight panels. Proceedings of the 50th Human Factors and Ergonomics Society Annual Meeting, San Francisco, CA, October 2006.en_US
dc.identifier.citedreferencePritchett, A. ( 2009 ). Aviation automation: General perspectives and specific guidance for the design of modes and alerts. In F. Durso (Ed.), Reviews of human factors and ergonomics (Vol. 5, pp. 82 – 113 ). Santa Monica, CA: Human Factors and Ergonomics Society.en_US
dc.identifier.citedreferenceProctor, R. W., & Van Zandt, T. ( 1994 ). Human factors in simple and complex systems. Needham Heights, MA: Allyn & Bacon.en_US
dc.identifier.citedreferenceRensink, R. A. ( 2002 ). Change detection. Annual Review of Psychology. 53 ( 4 ), 245 – 277.en_US
dc.identifier.citedreferenceRiley, V. ( 2001 ). A new language for pilot interfaces. Ergonomics in Design. 9 ( 2 ), 21 – 26.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.