Show simple item record

Data exploration in phylogenetic inference: scientific, heuristic, or neither

dc.contributor.authorGrant, Taranen_US
dc.contributor.authorKluge, Arnold Gen_US
dc.date.accessioned2012-09-05T14:45:58Z
dc.date.available2012-09-05T14:45:58Z
dc.date.issued2003-10en_US
dc.identifier.citationGrant, Taran; Kluge, Arnold G (2003). "Data exploration in phylogenetic inference: scientific, heuristic, or neither." Cladistics 19(5). <http://hdl.handle.net/2027.42/93511>en_US
dc.identifier.issn0748-3007en_US
dc.identifier.issn1096-0031en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93511
dc.description.abstractThe methods of data exploration have become the centerpiece of phylogenetic inference, but without the scientific importance of those methods having been identified. We examine in some detail the procedures and justifications of Wheeler's sensitivity analysis and relative rate comparison (saturation analysis). In addition, we review methods designed to explore evidential decisiveness, clade stability, transformation series additivity, methodological concordance, sensitivity to prior probabilities (Bayesian analysis), skewness, computer‐intensive tests, long‐branch attraction, model assumptions (likelihood ratio test), sensitivity to amount of data, polymorphism, clade concordance index, character compatibility, partitioned analysis, spectral analysis, relative apparent synapomorphy analysis, and congruence with a “known” phylogeny. In our review, we consider a method to be scientific if it performs empirical tests, i.e., if it applies empirical data that could potentially refute the hypothesis of interest. Methods that do not perform tests, and therefore are not scientific, may nonetheless be heuristic in the scientific enterprise if they point to more weakly or ambiguously corroborated hypotheses, such propositions being more easily refuted than those that have been more severely tested and are more strongly corroborated. Based on common usage, data exploration in phylogenetics is accomplished by any method that performs sensitivity or quality analysis. Sensitivity analysis evaluates the responsiveness of results to variation or errors in parameter values and assumptions. Sensitivity analysis is generally interpreted as providing a measure of support, where conclusions that are insensitive (robust, stable) to perturbations are judged to be accurate, probable, or reliable. As an alternative to that verificationist concept, we define support objectively as the degree to which critical evidence refutes competing hypotheses. As such, degree of support is secondary to the scientific optimality criterion of maximizing explanatory power. Quality analyses purport to distinguish good, reliable, accurate data from bad, misleading, erroneous data, thereby assessing the ability of data to indicate the true phylogeny. Only the quality analysis of character compatibility can be judged scientific—and a weak test at that compared to character congruence. Methods judged to be heuristic include Bremer support, long‐branch extraction, and safe taxonomic reduction, and we underscore the great heuristic potential of a posteriori analysis of patterns of transformations on the total‐evidence cladogram. However, of the more than 20 kinds of data exploration methods evaluated, the vast majority is neither scientific nor heuristic. Given so little demonstrated cognitive worth, we conclude that undue emphasis has been placed on data exploration in phylogenetic inference, and we urge phylogeneticists to consider more carefully the relevance of the methods that they employ. [T]he cult of impressive technicalities or the cult of precision may get the better of us, and interfere with our search for clarity, simplicity, and truth [Popper, 1983, p. 60. Empirical papers chosen for publication are judged to be of interest to a broad systematics audience because they represent exemplary case studies involving some important contemporary issue or issues. These may be unusually thorough explorations of data , applications of new methodology, illustrations of fundamental principles, and/or investigations of interesting evolutionary questions. [Systematic Biology: Instructions for authors, 2002; italics added]en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleData exploration in phylogenetic inference: scientific, heuristic, or neitheren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMuseum of Zoology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USAen_US
dc.contributor.affiliationotherDivision of Vertebrate Zoology, Herpetology, American Museum of Natural History, New York, NY 10024, USAen_US
dc.identifier.pmid12606536en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93511/1/j.1096-0031.2003.tb00311.x.pdf
dc.identifier.doi10.1111/j.1096-0031.2003.tb00311.xen_US
dc.identifier.sourceCladisticsen_US
dc.identifier.citedreferenceReeder, T.W., Montanucci, R.R., 2001. Phylogenetic analysis of the horned lizards (Phrynosomatidae: Phrynosoma ): evidence from mitochondrial DNA and morphology. Copeia 2001, 309 – 323.en_US
dc.identifier.citedreferenceWheeler, W.C., Hayashi, C.Y., 1998. The phylogeny of the extant chelicerate orders. Cladistics 14, 173 – 192.en_US
dc.identifier.citedreferenceWheeler, W.C., Whiting, M.F., Wheeler, Q.D., Carpenter, J.M., 2001. The phylogeny of extant hexapod orders. Cladistics 17, 113 – 169.en_US
dc.identifier.citedreferenceWhelan, S., Goldman, N., 1999. Distributions of statistics used for the comparison of models of sequence evolution in phylogenetics. Mol. Biol. Evol. 16, 1292 – 1299.en_US
dc.identifier.citedreferenceWiens, J.J., 1995. Polymorphic characters in phylogenetic systematics. Syst. Biol. 44, 482 – 500.en_US
dc.identifier.citedreferenceWiens, J.J., 1998. Testing phylogenetic methods with tree congruence: phylogenetic analysis of polymorphic morphological characters in phrynosomatid lizards. Syst. Biol. 47, 427 – 444.en_US
dc.identifier.citedreferenceWiens, J.J., 1999. Polymorphism in systematics and comparative biology. Annu. Rev. Ecol. Syst. 30, 327 – 362.en_US
dc.identifier.citedreferenceWiens, J.J., 2000a. Coding morphological variation within species and higher taxa for phylogenetic analysis. In: Wiens, J.J., (Ed.), Phylogenetic Analysis of Morphological Data. Smithsonian Institution Press, Washington, pp. 115 – 145.en_US
dc.identifier.citedreferenceWiens, J.J., 2000b. Reconstructing phylogenies from allozyme data: comparing method performance with congruence. Biol. J. Linn. Soc. 70, 613 – 632.en_US
dc.identifier.citedreferenceWiens, J.J., 2001. Character analysis in morphological phylogenetics: problems and solutions. Syst. Biol. 50, 689 – 699.en_US
dc.identifier.citedreferenceWilgenbusch, J., de Queiroz, K., 2000. Phylogenetic relationships among the phrynosomatid sand lizards inferred from mitochondrian DNA sequences generated by heterogeneous evolutionary processes. Syst. Biol. 49, 592 – 612.en_US
dc.identifier.citedreferenceWilkinson, M., 1992. Ordered versus unordered characters. Cladistics 8, 375 – 385.en_US
dc.identifier.citedreferenceWilkinson, M., 1994. Common cladistic information and its consensus representation: reduced Adams and reduced cladistic consensus trees and profiles. Syst. Biol. 43, 343 – 368.en_US
dc.identifier.citedreferenceWilkinson, M., 1995. Coping with abundant missing entries in phylogenetic inference using parsimony. Syst. Biol. 44, 501 – 514.en_US
dc.identifier.citedreferenceWilkinson, M., Thorley, J.L., Upchurch, P., 2000. A chain is no stronger than its weakest link: double decay analysis of phylogenetic hypotheses. Syst. Biol. 49, 754 – 776.en_US
dc.identifier.citedreferenceWilson, E.O., 1965. A consistency test for phylogenies based on contemporaneous species. Syst. Zool. 14, 214 – 220.en_US
dc.identifier.citedreferenceYang, Z., Goldman, N., Friday, A., 1995. Maximum likelihood trees from DNA sequences: a peculiar statistical estimation problem. Syst. Biol. 44, 384 – 399.en_US
dc.identifier.citedreferenceYang, Z., Yoder, A.D., 1999. Estimation of the transition/transversion rate bias and species sampling. J. Mol. Evol. 48, 274 – 283.en_US
dc.identifier.citedreferenceYoder, A.D., Irwin, J.A., Payseur, B.A., 2001. Failure of the ILD to determine data combinability for slow loris phylogeny. Syst. Biol. 50, 408 – 424.en_US
dc.identifier.citedreferenceZardoya, R., Meyer, A., 1996. Phylogenetic performance of mitochondrial protein‐coding genes in resolving relationships among vertebrates. Mol. Biol. Evol. 13, 933 – 942.en_US
dc.identifier.citedreferenceAdams III, E.N., 1972. Consensus techniques and the comparison of taxonomic trees. Syst. Zool. 21, 390 – 397.en_US
dc.identifier.citedreferenceAllard, M.W., Carpenter, J.M., 1996. On weighting and congruence. Cladistics 12, 183 – 198.en_US
dc.identifier.citedreferenceAllard, M.W., Farris, J.S., Carpenter, J.M., 1999. Congruence among mammalian mitochondrial genes. Cladistics 15, 75 – 84.en_US
dc.identifier.citedreferenceAllard, M.W., Miyamoto, M.M., 1992. Testing phylogenetic approaches with empirical data, as illustrated with the parsimony method. Mol. Biol. Evol. 9, 778 – 786.en_US
dc.identifier.citedreferenceAnderson, J.S., 2001. The phylogenetic trunk: maximal inclusion of taxa with missing data in an analysis of the Lepospondyli (Vertebrata, Tetrapoda). Syst. Biol. 50, 170 – 193.en_US
dc.identifier.citedreferenceArchie, J.W., 1989a. Phylogenies of plant families: a demonstration of phylogenetic randomness in DNA sequence data derived from proteins. Evolution 43, 1796 – 1800.en_US
dc.identifier.citedreferenceArchie, J.W., 1989b. A randomization test for phylogenetic information in systematic data. Syst. Zool. 38, 239 – 252.en_US
dc.identifier.citedreferenceArnedo, M.A., Oromí, P., Ribera, C., 2002. Radiation of the spider genus Dysdera (Aranae, Dysderidae) in the Canary Islands: cladistic assessment based on multiple data sets. Cladistics 17, 313 – 353.en_US
dc.identifier.citedreferenceAsher, R.J., 1999. A morphological basis for assessing the phylogeny of the “Tenrecoidea” (Mammalia, Lipotyphla). Cladistics 15, 231 – 252.en_US
dc.identifier.citedreferenceAustin, J.D., Lougheed, S.C., Tanner, K., Chek, A.A., Bogart, J.P., Boag, P.T., 2002. A molecular perspective on the evolutionary affinities of an enigmatic neotropical frog, Allophryne ruthveni. Zool. J. Linnean Soc. 134, 335 – 346.en_US
dc.identifier.citedreferenceBaird, B.F., 1989. Managerial Decisions under Uncertainty: An Introduction to the Analysis of Decision Making. Wiley, New York.en_US
dc.identifier.citedreferenceBaker, R.H., DeSalle, R., 1997. Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Syst. Biol. 46, 654 – 673.en_US
dc.identifier.citedreferenceBallard, J.W.O., Olsen, G.J., Faith, D.P., Odgers, W.A., Rowell, D.M., Atkinson, P.W., 1992. Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science 258, 1345 – 1348.en_US
dc.identifier.citedreferenceBallard, J.W.O., Thayer, M.K., Newton Jr., A.F., Grismer, E.R., 1998. Data sets, partitions, and characters: philosophies and procedures for analyzing multiple data sets. Syst. Biol. 47, 367 – 396.en_US
dc.identifier.citedreferenceBarker, F.K., Lanyon, S.M., 2000. The impact of parsimony weighting schemes on inferred relationships among toucans and Neotropical barbets (Aves: Piciformes). Mol. Phylogenet. Evol. 15, 215 – 234.en_US
dc.identifier.citedreferenceBarker, F.K., Lutzoni, F.M., 2002. The utility of the incongruence length difference test. Syst. Biol. 51, 625 – 637.en_US
dc.identifier.citedreferenceBarkman, T.J., Chenery, G., McNeal, J.R., Lyons‐Weiler, J., Ellisens, W.J., Moore, G., Wolfe, A.D., dePamphilis, C.W., 2000. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proc. Natl. Acad. Sci. USA 97, 13166 – 13171.en_US
dc.identifier.citedreferenceBerlocher, S.H., Swofford, D.L., 1997. Searching for phylogenetic trees under the frequency parsimony criterion: an approximation using generalized parsimony. Syst. Biol. 46, 211 – 215.en_US
dc.identifier.citedreferenceBraun, D., 1998. The role of funding agencies in the cognitive development of science. Res. Policy 27, 807 – 821.en_US
dc.identifier.citedreferenceBremer, K., 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42, 795 – 803.en_US
dc.identifier.citedreferenceBremer, K., 1994. Branch support and tree stability. Cladistics 10, 295 – 304.en_US
dc.identifier.citedreferenceBrower, A.V.Z., 2000. Evolution is not a necessary assumption of cladistics. Cladistics 16, 143 – 154.en_US
dc.identifier.citedreferenceBrown, J.K.M., 1994. Bootstrap hypothesis tests for evolutionary trees and other dendrograms. Proc. Natl. Acad. Sci. USA 91, 12293 – 12297.en_US
dc.identifier.citedreferenceBrown, W.M., Prager, E.M., Wang, A., 1982. Mitochondrial DNA sequences of primates, tempo and mode of evolution. J. Mol. Evol. 18, 225 – 239.en_US
dc.identifier.citedreferenceBuckley, T.R., Cunningham, C.W., 2002. The effects of nucleotide substitution model assumptions on estimates of nonparametric bootstrap support. Mol. Biol. Evol. 19, 394 – 405.en_US
dc.identifier.citedreferenceBuckley, T.R., Simon, C., Chambers, G.K., 2001. Exploring among‐site rate variation models in a maximum likelihood framework using empirical data: effects of model assumptions on estimates of topology, branch lengths, and bootstrap support. Syst. Biol. 50, 67 – 86.en_US
dc.identifier.citedreferenceBuckup, P.A., Dyer, B.S., 1991. Transformation series analysis (TSA) is dependent on initial order of character states. Syst. Zool. 40, 500 – 502.en_US
dc.identifier.citedreferenceBull, J.J., Huelsenbeck, J.P., Cunningham, C.W., Swofford, D., Waddell, P.J., 1993. Partitioning and combining data in phylogenetic analysis. Syst. Biol. 42, 384 – 397.en_US
dc.identifier.citedreferenceBunge, M., 1998. Philosophy of Science: From Explanation to Justification. Transaction Publishers, New Brunswick, NJ.en_US
dc.identifier.citedreferenceBurbrink, F.T., Lawson, R., Slowinski, J.B., 2000. Mitochondrial DNA phylogeography of the polytypic North american rat snake ( Elaphe obsoleta ): a critique of the subspecies concept. Evolution 54, 2107 – 2118.en_US
dc.identifier.citedreferenceBurnham, K.P., Anderson, D.R., 1998. Model Selection and Inference: A Practical Information‐Theoretic Approach. Springer, New York.en_US
dc.identifier.citedreferenceCampbell, J.A., Frost, D.R., 1993. Anguid lizards of the genus Abronia: revisionary notes, descriptions of new species, a phylogenetic analysis, and key. Bull. Am. Mus. Nat. Hist. 216, 1 – 121.en_US
dc.identifier.citedreferenceCarpenter, J.M., 1988. Choosing among multiple equally parsimonious cladograms. Cladistics 4, 291 – 296.en_US
dc.identifier.citedreferenceCarpenter, J.M., 1992. Random cladistics. Cladistics 8, 147 – 153.en_US
dc.identifier.citedreferenceCarpenter, J.M., 1994. Successive weighting, reliability, and evidence. Cladistics 10, 177 – 181.en_US
dc.identifier.citedreferenceCarpenter, J.M., Goloboff, P.A., Farris, J.S., 1998. PTP is meaningless, T‐PTP is contradictory: a reply to Trueman. Cladistics 14, 105 – 116.en_US
dc.identifier.citedreferenceCarranza, S., Arnold, E.N., Mateo, J.A., Geniez, P., 2002. Relationships and evolution of the North African geckos, Geckonia and Tarentola (Reptilia: Gekkonidae), based on mitochondrial and nuclear DNA sequences. Mol. Phylogenet. Evol. 23, 244 – 256.en_US
dc.identifier.citedreferenceChase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler, B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y., Kron, K.A., Rettig, J.H., Conti, E., Palmer, J.D., Manhart, J.R., Sytsma, K.J., Michaels, H.J., Kress, W.J., Karol, K.G., Clark, W.D., Hedren, M., Gaut, B.S., Jansen, R.K., Kim, K., Wimpee, C.F., Smith, J.F., Furnier, G.R., Strauss, S.H., Xiang, Q., Plunkett, G.M., Soltis, P.S., Swensen, S.M., Williams, S.E., Gadek, P.A., Quinn, C.J., Eguiarte, L.E., Golenberg, E., Learn, G.H.J., Graham, S.W., Barrett, S.C.H., Dayanandan, S., Albert, V.A., 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80, 528 – 580.en_US
dc.identifier.citedreferenceChavarría, G., Carpenter, J.M., 1994. “Total evidence” and the evolution of highly social bees. Cladistics 10, 229 – 258.en_US
dc.identifier.citedreferenceChek, A.A., Lougheed, S.C., Bogart, J.P., Boag, P.T., 2001. Perception and history: molecular phylogeny of a diverse group of frogs, the 30–chromosome Hyla (Anura: Hylidae). Mol. Phylogenet. Evol. 18, 370 – 385.en_US
dc.identifier.citedreferenceChippindale, P.T., Wiens, J.J., 1994. Weighting, partitioning, and combining characters in phylogenetic analysis. Syst. Biol. 43, 278 – 287.en_US
dc.identifier.citedreferenceCicero, C., Johnson, N.K., 2001. Higher‐level phylogeny of new world vireos (Aves: Vireonidae) based on sequences of multiple mitochondrial DNA genes. Mol. Phylogenet. Evol. 20, 27 – 40.en_US
dc.identifier.citedreferenceCicero, C., Johnson, N.K., 2002. Phylogeny and character evolution in the Empidonax group of tyrant flycatchers (Aves: Tyrannidae): a test of W.E. Lanyon's hypothesis using mtDNA sequences. Mol. Phylogenet. Evol. 22, 289 – 302.en_US
dc.identifier.citedreferenceColless, D.H., 1980. Congruence between morphometric and allozyme data for Menidia species: a reappraisal. Syst. Zool. 29, 288 – 299.en_US
dc.identifier.citedreferenceCracraft, J., Helm‐Bychowski, K., 1991. Parsimony and phylogenetic inference using DNA sequences: some methodological strategies. In: Miyamoto, M.M. and Cracraft, J., (Eds.), Phylogenetic analysis of DNA Sequences. Oxford University Press, New York, pp. 184 – 220.en_US
dc.identifier.citedreferenceCrandall, K.A., Fitzpatrick Jr., J.F., 1996. Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Syst. Biol. 45, 1 – 26.en_US
dc.identifier.citedreferenceCunningham, C., 1997. Can three incongruence tests predict when data should be combined Mol. Biol. Evol. 14, 733 – 740.en_US
dc.identifier.citedreferenceCunningham, C.W., Zhu, H., Hillis, D.M., 1998. Best fit maximum‐likelihood models for phylogenetic inference: empirical tests with known phylogenies. Evolution 52, 978 – 987.en_US
dc.identifier.citedreferenceDavis, J.I., 1993. Character removal as a means for assessing stability of clades. Cladistics 9, 201 – 210.en_US
dc.identifier.citedreferenceDavis, J.I., Frohlich, M.W., Soreng, R.J., 1993. Cladistic characters and cladogram stability. Syst. Bot. 18, 188 – 196.en_US
dc.identifier.citedreferencede Queiroz, A., Donoghue, M.J., Kim, J., 1995. Separate versus combined analysis of phylogenetic evidence. Annu. Rev. Ecol. Syst. 26, 657 – 681.en_US
dc.identifier.citedreferencede Queiroz, K., 1987. Phylogenetic systematics of iguanine lizards: a comparative osteological study. Univ. Calif. Publ. Zool., 118.en_US
dc.identifier.citedreferenceDeSalle, R., Brower, A.V.Z., 1997. Process partitions, congruence, and the independence of characters: inferring relationships among closely related Hawaiian Drosophila from multiple gene regions. Syst. Biol. 46, 751 – 764.en_US
dc.identifier.citedreferenceDolphin, K., Belshaw, R., Orme, C.D.L., Quicke, D.L.J., 2000. Noise and incongruence: interpreting results of the incongruence length difference test. Mol. Phylogenet. Evol. 17, 401 – 406.en_US
dc.identifier.citedreferenceDonoghue, M.J., 1994. Progress and prospects in reconstructing plant phylogeny. Ann. Missouri Bot. Gard. 81, 405 – 418.en_US
dc.identifier.citedreferenceDonoghue, M.J., Ackerly, D.D., 1996. Phylogenetic uncertainties and sensitivity analyses in comparative biology. Phil. Trans. R. Soc. Lond. B 351, 1241 – 1249.en_US
dc.identifier.citedreferenceDonoghue, M.J., Doyle, J.A., Gauthier, J., Kluge, A.G., Rowe, T., 1989. The importance of fossils in phylogeny reconstruction. Annu. Rev. Ecol. Syst. 20, 431 – 460.en_US
dc.identifier.citedreferenceDowton, M., Austin, A.D., 2002. Increased incongruence does not necessarily indicate increased phylogenetic accuracy–the behavior of the incongruence length difference test in mixed‐model analysis. Syst. Biol. 51, 19 – 31.en_US
dc.identifier.citedreferenceDuffels, J.P., Turner, H., 2002. Cladistic analysis and biogeography of the cicadas of the Indo‐Pacific subtribe Cosmopsaltriina (Hemiptera: Cicadoidea: Cicadidae). Syst. Entomol. 27, 235 – 261.en_US
dc.identifier.citedreferenceEdwards, A.W.F., 1972. Likelihood. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceEernisse, D.J., Kluge, A.G., 1993. Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Mol. Biol. Evol. 10, 1170 – 1195.en_US
dc.identifier.citedreferenceEfron, B., Halloran, E., Holmes, S., 1996. Bootstrap confidence levels for phylogenetic trees. Proc. Natl. Acad. Sci. USA 93, 7085 – 7090.en_US
dc.identifier.citedreferenceFaith, D.P., 1991. Cladistic permutation tests for monophyly and nonmonophyly. Syst. Zool. 40, 366 – 375.en_US
dc.identifier.citedreferenceFaith, D.P., 1992. On corroboration: a reply to Carpenter. Cladistics 8, 265 – 273.en_US
dc.identifier.citedreferenceFaith, D.P., Cranston, P.S., 1991. Could a cladogram this short have arisen by chance alone? On permutation tests for cladistic structure. Cladistics 7, 1 – 28.en_US
dc.identifier.citedreferenceFaith, D.P., Trueman, J.W.H., 2001. Towards an inclusive philosophy for phylogenetic inference. Syst. Biol. 50, 331 – 350.en_US
dc.identifier.citedreferenceFaivovich, J., 2002. On RASA. Cladistics 18, 324 – 333.en_US
dc.identifier.citedreferenceFarris, J.S., 1967. The meaning of relationship and taxonomic procedure. Syst. Zool. 16, 44 – 51.en_US
dc.identifier.citedreferenceFarris, J.S., 1969. A successive approximations approach to character weighting. Syst. Zool. 18, 374 – 385.en_US
dc.identifier.citedreferenceFarris, J.S., 1971. The hypothesis of nonspecificity and taxonomic congruence. Annu. Rev. Ecol. Syst. 2, 227 – 302.en_US
dc.identifier.citedreferenceFarris, J.S., 1973a. On comparing the shapes of taxonomic trees. Syst. Zool. 22, 50 – 54.en_US
dc.identifier.citedreferenceFarris, J.S., 1973b. A probability model for inferring evolutionary trees. Syst. Zool. 22, 250 – 256.en_US
dc.identifier.citedreferenceFarris, J.S., 1982. Simplicity and informativeness in systematics and phylogeny. Syst. Zool. 31, 413 – 444.en_US
dc.identifier.citedreferenceFarris, J.S., 1983. The logical basis of phylogenetic analysis. In: Platnick, N.I., Funk, V.A., (Eds.), Advances in Cladistics. Columbia University Press, New York, pp. 7 – 36.en_US
dc.identifier.citedreferenceFarris, J.S., 1986. On the boundaries of phylogenetic systematics. Cladistics 2, 14 – 27.en_US
dc.identifier.citedreferenceFarris, J.S., 1989a. The retention index and homoplasy excess. Syst. Zool. 38, 406 – 407.en_US
dc.identifier.citedreferenceFarris, J.S., 1989b. The retention index and the rescaled consistency index. Cladistics 5, 417 – 419.en_US
dc.identifier.citedreferenceFarris, J.S., 1995. Conjectures and refutations. Cladistics 11, 105 – 118.en_US
dc.identifier.citedreferenceFarris, J.S., 1998. The future of phylogeny reconstruction. Zool. Scripta 26, 303 – 311.en_US
dc.identifier.citedreferenceFarris, J.S., 1999. Likelihood and inconsistency. Cladistics 15, 199 – 204.en_US
dc.identifier.citedreferenceFarris, J.S., 2002a. RASA attributes highly significant structure to randomized data. Cladistics 18, 334 – 353.en_US
dc.identifier.citedreferenceFarris, J.S., 2002b. Support weighting. Cladistics 17, 389 – 394.en_US
dc.identifier.citedreferenceFarris, J.S., Albert, V.A., Källersjö, M., Lipscomb, D., Kluge, A.G., 1996. Parsimony jackknifing outperforms neighbor‐joining. Cladistics 12, 99 – 124.en_US
dc.identifier.citedreferenceFarris, J.S., Källersjö, M., De Laet, J., 2001. Branch lengths do not indicate support–even in maximum likelihood. Cladistics 17, 298 – 299.en_US
dc.identifier.citedreferenceFarris, J.S., Källersjö, M., Kluge, A.G., Bult, C., 1994a. Permutations. Cladistics 10, 65 – 76.en_US
dc.identifier.citedreferenceFarris, J.S., Källersjö, M., Kluge, A.G., Bult, C., 1994b. Testing significance of incongruence. Cladistics 10, 315 – 319.en_US
dc.identifier.citedreferenceFarris, J.S., Källersjö, M., Kluge, A.G., Bult, C., 1995. Constructing a significance test for incongruence. Syst. Biol. 44, 570 – 572.en_US
dc.identifier.citedreferenceFarris, J.S., Kluge, A.G., Eckardt, M.J., 1970. On predictivity and efficiency. Syst. Zool. 19, 363 – 372.en_US
dc.identifier.citedreferenceFelsenstein, J., 1973. Maximum likelihood and minimum‐steps methods for estimating evolutionary trees from data on discrete characters. Syst. Zool. 22, 240 – 249.en_US
dc.identifier.citedreferenceFelsenstein, J., 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401 – 410.en_US
dc.identifier.citedreferenceFelsenstein, J., 1983. Methods for inferring phylogenies: A statistical view. In: Felsenstein, J., (Ed.), Numerical Taxonomy. Springer‐Verlag, New York, pp. 315 – 334.en_US
dc.identifier.citedreferenceFelsenstein, J., 1985a. Confidence limits on phylogenies with a molecular clock. Syst. Zool. 34, 152 – 161.en_US
dc.identifier.citedreferenceFelsenstein, J., 1985b. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783 – 791.en_US
dc.identifier.citedreferenceFelsenstein, J., 1988. Phylogenies from molecular sequences: inference and reliability. Annu. Rev. Genet. 22, 521 – 565.en_US
dc.identifier.citedreferenceFelsenstein, J., Kishino, H., 1993. Is there something wrong with the bootstrap on phylogenies A reply to Hillis and Bull. Syst. Biol. 42, 193 – 200.en_US
dc.identifier.citedreferenceFisher, D.R., Rohlf, F.J., 1969. Robustness of numerical taxonomic methods and errors in homology. Syst. Zool. 18, 33 – 36.en_US
dc.identifier.citedreferenceFitch, W.M., 1979. Cautionary remarks on using gene expression events in parsimony procedures. Syst. Zool. 28, 375 – 379.en_US
dc.identifier.citedreferenceFlores‐Villela, O., Kjer, K.M., Benabib, M., Sites Jr., J.W., 2000. Multiple data sets, congruence, and hypothesis testing for the phylogeny of basal groups of the lizard genus Sceloporus (Squamata, Phrynosomatidae). Syst. Biol. 49, 713 – 739.en_US
dc.identifier.citedreferenceFloyd, J.W., 2002. Phylogenetic and biogeographic patterns in Gaylussacia (Ericaceae) based on morphological, nuclear DNA, and chloroplast DNA variation. Syst. Bot. 27, 99 – 115.en_US
dc.identifier.citedreferenceFriedlander, T.P., Regier, J.C., Mitter, C., 1994. Phylogenetic information content of five nuclear gene sequences in animals: Initial assessment of character sets from concordance and divergence studies. Syst. Biol. 43, 511 – 525.en_US
dc.identifier.citedreferenceFriedlander, T.P., Regier, J.C., Mitter, C., Wagner, D., 1996. A nuclear gene for higher level phylogenetics: phosphoenolpyruvate carboxykinase tracks Mesozoic‐age divergences within Lepidoptera (Insecta). Mol. Biol. Evol. 13, 594 – 604.en_US
dc.identifier.citedreferenceFrost, D.R., Etheridge, R., Janies, D., Titus, T.A., 2001a. Total evidence, sequence alignment, evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania). Am. Mus. Novit. 3343, 1 – 38.en_US
dc.identifier.citedreferenceFrost, D.R., Kluge, A.G., 1994. A consideration of epistemology in systematic biology, with special reference to species. Cladistics 10, 259 – 294.en_US
dc.identifier.citedreferenceFrost, D.R., Rodrigues, M.T., Grant, T., Titus, T.A., 2001b. Phylogenetics of the lizard genus Tropidurus (Squamata: Tropiduridae: Tropidurinae): direct optimization, descriptive efficiency, and sensitivity analysis of congruence between molecular data and morphology. Mol. Phylogenet. Evol. 21, 352 – 371.en_US
dc.identifier.citedreferenceFuller, S., 1993. Philosophy of Science and its Discontents. The Guilford Press, New York.en_US
dc.identifier.citedreferenceGahn, F.J., Kammer, T.W., 2002. The cladid crinoid Barycrinus from the Burlington Limestone (early Osagean) and the phylogenetics of Mississippian botryocrinids. J. Paleont. 76, 123 – 133.en_US
dc.identifier.citedreferenceGao, K.‐Q., Norell, M.A., 1998. Taxonomic revision of Carusia (Reptilia: Squamata) from the Late Cretaceous of the Gobi Desert and phylogenetic relationships of anguimorphan lizards. Am. Mus. Novit. 3230, 1 – 51.en_US
dc.identifier.citedreferenceGardiner, B.G., 1982. Tetrapod classification. Zool. J. Linnean Soc. 74, 207 – 232.en_US
dc.identifier.citedreferenceGatesy, J., O'Grady, P., Baker, R.H., 1999. Corroboration among data sets in simultaneous analysis: hidden support for phylogenetic relationships among higher level artiodactyl taxa. Cladistics 15, 271 – 313.en_US
dc.identifier.citedreferenceGattei, S., 2002. The positive power of negative thinking. Cladistics 18, 446 – 452.en_US
dc.identifier.citedreferenceGauthier, J., Kluge, A.G., Rowe, T., 1988. Amniote phylogeny and the importance of fossils. Cladistics 4, 105 – 209.en_US
dc.identifier.citedreferenceGeiger, D.L., 2002. Stretch coding and block coding: two new strategies to represent questionably aligned DNA sequences. J. Mol. Evol. 54, 191 – 199.en_US
dc.identifier.citedreferenceGiribet, G., Distel, D.L., Polz, M., Sterrer, W., Wheeler, W.C., 2000. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Syst. Biol. 49, 539 – 562.en_US
dc.identifier.citedreferenceGiribet, G., Edgecombe, G.D., Wheeler, W.C., 2001. Arthropod phylogeny based on eight molecular loci and morphology. Nature 413, 157 – 161.en_US
dc.identifier.citedreferenceGiribet, G., Edgecombe, G.D., Wheeler, W.C., Babbit, C., 2002. Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18, 5 – 70.en_US
dc.identifier.citedreferenceGiribet, G., Wheeler, W.C., 1999. On gaps. Mol. Phylogenet. Evol. 13, 132 – 143.en_US
dc.identifier.citedreferenceGiribet, G., Wheeler, W.C., 2002. On bivalve phylogeny: a high‐level analysis of the Bivalvia (Mullusca) based on combined morphology and DNA sequences. Invertebr. Biol. 121, 271 – 324.en_US
dc.identifier.citedreferenceGoldman, N., 1990. Maximum likelihood inference of phylogenetic trees, with special reference to a Poisson process model of DNA substitution and to parsimony analyses. Syst. Zool. 39, 345 – 361.en_US
dc.identifier.citedreferenceGoldman, N., 1993. Statistical tests of models of DNA substitution. J. Mol. Evol. 36, 182 – 198.en_US
dc.identifier.citedreferenceGoldman, N., Whelan, A.S., 2000. Statistical tests of gamma‐distributed rate heterogeneity in models of sequence evolution in phylogenetics. Mol. Biol. Evol. 17, 975 – 978.en_US
dc.identifier.citedreferenceGoloboff, P.A., 1999. Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15, 415 – 428.en_US
dc.identifier.citedreferenceGrant, T., 2002. Testing methods: the evaluation of discovery operations in evolutionary biology. Cladistics 18, 94 – 111.en_US
dc.identifier.citedreferenceGraybeal, A., 1994. Evaluating the phylogenetic utility of genes: a search for genes informative about deep divergences among vertebrates. Syst. Biol. 43, 174 – 193.en_US
dc.identifier.citedreferenceHacking, I., 1965. The Logic of Statistical Inference. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceHall, J.S., Adams, B., Parsons, T.J., French, R., Lane, L.C., Jensen, S.G., 1998. Molecular cloning, sequencing, and phylogenetic relationships of a new potyvirus: sugarcane streak mosaic virus, and a reevaluation of the classification of the Potyviridae. Mol. Phylogenet. Evol. 10, 323 – 332.en_US
dc.identifier.citedreferenceHarshman, J., 1994. The effect of irrelevant characters on bootstrap values. Syst. Biol. 43, 419 – 424.en_US
dc.identifier.citedreferenceHendy, M.D., 1989. The relationship between simple evolutionary tree models and observable sequence data. Syst. Zool. 38, 310 – 321.en_US
dc.identifier.citedreferenceHendy, M.D., Charleston, M.A., 1993. Hadamard conjugation: a versatile tool for modelling nucleotide sequence evolution. New Zealand J. Bot. 31, 231 – 237.en_US
dc.identifier.citedreferenceHendy, M.D., Penny, D., 1993. Spectral analysis of phylogenetic data. J. Classif. 10, 5 – 24.en_US
dc.identifier.citedreferenceHendy, M.D., Penny, D., Steel, M.A., 1994. A discrete Fourier analysis for evolutionary trees. Proc. Natl. Acad. Sci. USA 91, 3339 – 3343.en_US
dc.identifier.citedreferenceHennig, W., 1966. Phylogenetic Systematics. University of Chicago, Chicago.en_US
dc.identifier.citedreferenceHillis, D.M., 1991. Discriminating between phylogenetic signal and random noise in DNA sequences. In: Miyamoto, M.M. and, Cracraft, J., (Eds.), Phylogenetic Analysis of DNA Sequences. Oxford University Press, New York, pp. 278 – 294.en_US
dc.identifier.citedreferenceHillis, D.M., 1995. Approaches for assessing phylogenetic accuracy. Syst. Biol. 44, 3 – 16.en_US
dc.identifier.citedreferenceHillis, D.M., 1999. SINEs of the perfect character. Proc. Natl. Acad. Sci. USA 96, 9979 – 9981.en_US
dc.identifier.citedreferenceHillis, D.M., Huelsenbeck, J.P., 1992. Signal, noise, and reliability in molecular phylogenetic analysis. J. Hered. 83, 189 – 195.en_US
dc.identifier.citedreferenceHuelsenbeck, J.P., 1991. Tree‐length distribution skewness: an indicator of phylogenetic information. Syst. Zool. 40, 257 – 270.en_US
dc.identifier.citedreferenceHuelsenbeck, J.P., 1997. Is the Felsenstein zone a fly trap Syst. Biol. 46, 69 – 74.en_US
dc.identifier.citedreferenceHuelsenbeck, J.P., Bull, J.J., Cunningham, C.W., 1996a. Combining data in phylogenetic analysis. Trends Ecol. Evol. 11, 152 – 158.en_US
dc.identifier.citedreferenceHuelsenbeck, J.P., Bull, J.J., Cunningham, C.W., 1996b. Combining data in phylogenetic analysis: reply from J.P. Huelsenbeck, J.J. Bull, and C.W. Cunningham. Trends Ecol. Evol. 11, 335.en_US
dc.identifier.citedreferenceHuelsenbeck, J.P., Crandall, K.A., 1997. Phylogeny estimation and hypothesis testing using maximum likelihood. Annu. Rev. Ecol. Syst. 28, 437 – 466.en_US
dc.identifier.citedreferenceHuelsenbeck, J.P., Hillis, D.M., Jones, R., 1996c. Parametric boot strapping in molecular phylogenetics: applications and performance. In: Ferraris, J.D., Palumbi, S.R., (Eds.), Molecular Zoology: Advances, Strategies, and Protocols. Wiley‐Liss Inc, New York, pp. 19 – 45.en_US
dc.identifier.citedreferenceHuelsenbeck, J.P., Larget, B., Miller, R.E., Ronquist, F., 2002. Potential applications and pitfalls of Bayesian inference of phylogeny. Syst. Biol. 51, 673 – 688.en_US
dc.identifier.citedreferenceHuelsenbeck, J.P., Rannala, B., 1997. Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276, 227 – 232.en_US
dc.identifier.citedreferenceHutchinson, M.N., Donnellan, S.C., 1992. Taxonomy and genetic variation in the Australian lizards of the genus Pseudemoia (Scincidae: Lygosominae). J. Nat. Hist 26, 215 – 264.en_US
dc.identifier.citedreferenceJackman, T.R., Larson, A., de Queiroz, K., Losos, J.B., 1999. Phylogenetic relationships and tempo of early diversification in Anolis lizards. Syst. Biol. 48, 254 – 285.en_US
dc.identifier.citedreferenceJanies, D., 2001. Phylogenetic relationships of extant echinoderm classes. Can. J. Zool. 79, 1232 – 1250.en_US
dc.identifier.citedreferenceJones, T.R., Kluge, A.G., Wolf, A.J., 1993. When theories and methodologies clash: a phylogenetic reanalysis of the North American ambystomatid salamanders (Caudata: Ambystomatidae). Syst. Biol. 42, 92 – 102.en_US
dc.identifier.citedreferenceKällersjö, M., Albert, V.A., Farris, J.S., 1999. Homoplasy increases phylogenetic structure. Cladistics 15, 91 – 93.en_US
dc.identifier.citedreferenceKällersjö, M., Farris, J.S., 1998. Recent advances in large‐scale plant phylogenetic studies. In: Nordenstam, B., El‐Ghazaly, G. and Kassas, M., (Eds.), Plant Systematics for the 21st Century. Portland Press, London, pp. 59 – 63.en_US
dc.identifier.citedreferenceKällersjö, M., Farris, J.S., Kluge, A.G., Bult, C., 1992. Skewness and permutation. Cladistics 8, 275 – 287.en_US
dc.identifier.citedreferenceKearney, M., 1998. Systematics of the amphisbaenian family Rhineuridae: missing data and resolution. J. Vert. Paleo. 18, 55A.en_US
dc.identifier.citedreferenceKearney, M., 2002. Fragmentary taxa, missing data, and ambiguity: mistaken assumptions and conclusions. Syst. Biol. 51, 369 – 381.en_US
dc.identifier.citedreferenceKelsey, C.R., Crandall, K.A., Voevodin, A.F., 1999. Different models, different trees: the geographic origin of PTLV‐I. Mol. Phylogenet. Evol. 13, 336 – 347.en_US
dc.identifier.citedreferenceKim, J., 1993. Improving the accuracy of phylogenetic estimation by combining different methods. Syst. Biol. 42, 331 – 340.en_US
dc.identifier.citedreferenceKim, J., 2000. Slicing hyper dimensional oranges: the geometry of phylogenetic estimation. Mol. Phylogenet. Evol. 17, 58 – 75.en_US
dc.identifier.citedreferenceKimura, M., 1955. Random genetic drift in multi‐allelic locus. Evolution 9, 419 – 435.en_US
dc.identifier.citedreferenceKimura, M., 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proc. Natl. Acad. Sci. USA 78, 454 – 458.en_US
dc.identifier.citedreferenceKishino, H., Hasegawa, M., 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order of Hominoidea. J. Mol. Evol. 29, 170 – 179.en_US
dc.identifier.citedreferenceKluge, A.G., 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38, 7 – 25.en_US
dc.identifier.citedreferenceKluge, A.G., 1991. Boine snake phylogeny and research cycles. Misc. Publ. Mus. Zool. Univ. Michigan 178, 1 – 58.en_US
dc.identifier.citedreferenceKluge, A.G., 1997. Testability and the refutation and corroboration of cladistic hypotheses. Cladistics 13, 81 – 96.en_US
dc.identifier.citedreferenceKluge, A.G., 1998. Sophisticated falsification and research cycles: consequences for differential character weighting in phylogenetic analysis. Zool. Scripta 26, 349 – 360.en_US
dc.identifier.citedreferenceKluge, A.G., 1999. The science of phylogenetic systematics: explanation, prediction, and test. Cladistics 14, 151 – 158.en_US
dc.identifier.citedreferenceKluge, A.G., 2001. Philosophical conjectures and their refutation. Syst. Biol. 50, 322 – 330.en_US
dc.identifier.citedreferenceKluge, A.G., 2002. Distinguishing “or” from “and” and the case for historical identification. Cladistics 18, 585 – 593.en_US
dc.identifier.citedreferenceKluge, A.G., Farris, J.S., 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18, 1 – 32.en_US
dc.identifier.citedreferenceKluge, A.G., Farris, J.S., 1999. Taxic homology = overall similarity. Cladistics 15, 205 – 212.en_US
dc.identifier.citedreferenceKluge, A.G., Wolf, A.J., 1993. Cladistics: what's in a word Cladistics 9, 183 – 199.en_US
dc.identifier.citedreferenceKornet, D.J., Turner, H., 1999. Coding polymorphism for phylogeny reconstruction. Syst. Biol. 48, 365 – 379.en_US
dc.identifier.citedreferenceKuhn, T.S., 1962. The Structure of Scientific Revolutions. University of Chicago Press, Chicago.en_US
dc.identifier.citedreferenceKuhn, T.S., 1977. The Essential Tension: Selected Studies in Scientific Tradition and Change. University of Chicago Press, Chicago.en_US
dc.identifier.citedreferenceLakatos, I., 1978. The Methodology of Scientific Research Programmes. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceLakatos, I., 1998. Science and pseudoscience. In: Curd, M. and Cover, J.A., (Eds.), Philosophy of Science: The Central Issues. W. W. Norton & Company, New York, pp. 20 – 26.en_US
dc.identifier.citedreferenceLamb, T., Bauer, A.M., 2002. Phylogenetic relationships of the large‐bodied members of the African lizard genus Pachydactylus (Reptilia: Gekkonidae). Copeia 2002, 586 – 596.en_US
dc.identifier.citedreferenceLanyon, S.M., 1985. Detecting internal inconsistencies in distance data. Syst. Zool. 34, 397 – 403.en_US
dc.identifier.citedreferenceLapointe, F.J., Cucumel, G., 1997. The average weighted consensus procedure: combination of weighted trees containing identical or overlapping sets of taxa. Syst. Biol. 46, 306 – 312.en_US
dc.identifier.citedreferenceLarson, A., 1994. The comparison of morphological and molecular data in phylogenetic systematics. In: Schierwater, B., Streit, B., Wagner, G.P. and DeSalle, R., (Eds.), Molecular Ecology and Evolution: Approaches and Applications. Birkhauser Verlag, Basel, pp. 371 – 390.en_US
dc.identifier.citedreferenceLarson, A., Dimmick, W.W., 1993. Phylogenetic relationships of the salamander families: an analysis of congruence among morphological and molecular characters. Herpetol. Monogr. 7, 77 – 93.en_US
dc.identifier.citedreferenceLe Quesne, W., 1969. A method of selection of characters in numerical taxonomy. Syst. Zool. 18, 201 – 205.en_US
dc.identifier.citedreferenceLe Quesne, W., 1989. The normal deviate test of phylogenetic value of a data matrix. Syst. Zool. 38, 51 – 54.en_US
dc.identifier.citedreferenceLento, G.M., Hickson, R.E., Chambers, G.K., Penny, D., 1995. Use of spectral analysis to test hypotheses on the origin of pinnipeds. Mol. Biol. Evol. 12, 28 – 52.en_US
dc.identifier.citedreferenceLevasseur, C., Lapointe, F.‐J., 2001. War and peace in phylogenetics: a rejoinder on total evidence and consensus. Syst. Biol. 50, 881 – 891.en_US
dc.identifier.citedreferenceLipscomb, D., 1990. Two methods for calculating cladogram characters: transformation series analysis and the iterative FIG/FOG method. Syst. Zool. 39, 277 – 288.en_US
dc.identifier.citedreferenceLipscomb, D., 1992. Parsimony, homology and the analysis of multistate characters. Cladistics 8, 45 – 65.en_US
dc.identifier.citedreferenceLyons‐Weiler, J., Hoelzer, G., 1999. Null model selection, compositional bias, character state bias, and the limits of phylogenetic information. Mol. Biol. Evol. 16, 1400 – 1405.en_US
dc.identifier.citedreferenceLyons‐Weiler, J., Hoelzer, G.A., 1997. Escaping from the Felsenstein Zone by detecting long branches in phylogenetic data. Mol. Phylogenet. Evol. 8, 375 – 384.en_US
dc.identifier.citedreferenceLyons‐Weiler, J., Hoelzer, G.A., Tausch, R.J., 1996. Relative apparent synapomorphy analysis (RASA) I: the statistical measurement of phylogenetic signal. Mol. Biol. Evol. 13, 749 – 757.en_US
dc.identifier.citedreferenceLyons‐Weiler, J., Hoelzer, G.A., Tausch, R.J. Optimal outgroup analysis. Biol. J. Linn. Soc. 64, 493 – 511.en_US
dc.identifier.citedreferenceLyons‐Weiler, J., Milinkovitch, M., 1997. A phylogenetic approach to the problem of differential lineage sorting. Mol. Biol. Evol. 14, 968 – 975.en_US
dc.identifier.citedreferenceMarshall, C., 1992. Substitution bias, weighted parsimony, and amniote phylogeny as inferred from 18S rRNA sequences. Mol. Biol. Evol. 9, 370 – 377.en_US
dc.identifier.citedreferenceMcGuire, J.A., Bong Heang, K., 2001. Phylogenetic systematics of Southeast Asian flying lizards (Iguania: Agamidae: Draco ) as inferred from mitochondrial DNA sequence data. Biol. J. Linn. Soc. 72, 203 – 229.en_US
dc.identifier.citedreferenceMickevich, M.F., 1978. Taxonomic congruence. Syst. Zool. 27, 143 – 158.en_US
dc.identifier.citedreferenceMickevich, M.F., 1980. Taxonomic congruence: Rohlf and Sokal's misunderstanding. Syst. Zool. 29, 162 – 176.en_US
dc.identifier.citedreferenceMickevich, M.F., 1982. Transformation series analysis. Syst. Zool. 31, 461 – 478.en_US
dc.identifier.citedreferenceMickevich, M.F., Farris, J.S., 1981. The implications of congruence in Menidia. Syst. Zool. 30, 351 – 370.en_US
dc.identifier.citedreferenceMickevich, M.F., Johnson, M.S., 1976. Congruence between morphological and allozyme data in evolutionary inference and character evolution. Syst. Zool. 25, 260 – 270.en_US
dc.identifier.citedreferenceMickevich, M.F., Lipscomb, D., 1991. Parsimony and the choice between different transformations for the same character set. Cladistics 7, 111 – 139.en_US
dc.identifier.citedreferenceMickevich, M.F., Weller, S.J., 1990. Phylogenetic character analysis: tracing character evolution on a cladogram. Cladistics 6, 137 – 170.en_US
dc.identifier.citedreferenceMilinkovitch, M.C., Lyons‐Weiler, J., 1998. Finding optimal ingroup topologies and convexities when the choice of outgroups is not obvious. Mol. Phylogenet. Evol. 9, 348 – 357.en_US
dc.identifier.citedreferenceMindell, D., 1991. Similarity and congruence as criteria for molecular homology. Mol. Biol. Evol. 8, 897 – 900.en_US
dc.identifier.citedreferenceMindell, D.P., Honeycutt, R.L., 1990. Ribosomal RNA in vertebrates: evolution and phylogenetic applications. Annu. Rev. Ecol. Syst. 21, 541 – 566.en_US
dc.identifier.citedreferenceMindell, D.P., Thacker, C.E., 1996. Rates of molecular evolution: phylogenetic issues and applications. Annu. Rev. Ecol. Syst. 27, 279 – 303.en_US
dc.identifier.citedreferenceMiya, M., Nishida, M., 2000. Use of mitogenomic information in teleostean molecular phylogenetics: a tree‐based exploration under the maximum‐parsimony optimality criterion. Mol. Phylogenet. Evol. 17, 437 – 455.en_US
dc.identifier.citedreferenceMiyamoto, M.M., Allard, M.W., Adkins, R.M., Janacek, L.L., Honeycutt, R.L., 1994. A congruence test of reliability using linked mitochondrial DNA sequences. Syst. Biol. 43, 236 – 249.en_US
dc.identifier.citedreferenceMiyamoto, M.M., Cracraft, J., 1991. Phylogenetic inference, DNA sequence analysis, and the future of molecular systematics. In: Miyamoto, M.M. and Cracraft, J., (Eds.), Phylogenetic Analysis of DNA Sequences. Oxford University Press, New York, pp. 3 – 17.en_US
dc.identifier.citedreferenceMiyamoto, M.M., Fitch, W.M., 1995. Testing species phylogenies and phylogenetic methods with congruence. Syst. Biol. 44, 64 – 76.en_US
dc.identifier.citedreferenceMueller, L.D., Ayala, F.J., 1982. Estimation and interpretation of genetic distance in empirical studies. Genet. Res. 40, 127 – 137.en_US
dc.identifier.citedreferenceMurphy, R.W., 1993. The phylogenetic analysis of allozyme data: invalidity of coding alleles by presence/absence and recommended procedures. Biochem. Syst. Ecol. 21, 25 – 38.en_US
dc.identifier.citedreferenceNaylor, G.J.P., Brown, W.M., 1997. Structural biology and phylogenetic estimation. Nature 388, 527 – 528.en_US
dc.identifier.citedreferenceNaylor, G.J.P., Brown, W.M., 1998. Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences. Syst. Biol. 47, 61 – 76.en_US
dc.identifier.citedreferenceNei, M., Kumar, S., 2000. Molecular Evolution and Phylogenetics. Oxford University Press.en_US
dc.identifier.citedreferenceNelson, G.J., 1979. Cladistic analysis and synthesis: principles and definitions, with a historical note on Adanson's Families des Plantes (1763–1764). Syst. Zool. 28, 1 – 21.en_US
dc.identifier.citedreferenceNickles, T., 2000. Discovery. In: Newton‐Smith, W.H., (Ed.), A Companion to the Philosophy of Science. Blackwell Publishers Ltd, Oxford, pp. 85 – 96.en_US
dc.identifier.citedreferenceNixon, K.C., 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407 – 414.en_US
dc.identifier.citedreferenceNixon, K.C., Carpenter, J.M., 1996a. On consensus, collapsibility, and clade concordance. Cladistics 12, 305 – 321.en_US
dc.identifier.citedreferenceNixon, K.C., Carpenter, J.M., 1996b. On simultaneous analysis. Cladistics 12, 221 – 241.en_US
dc.identifier.citedreferenceNixon, K.C., Davis, J.I., 1991. Polymorphic taxa, missing values and cladistic analysis. Cladistics 7, 233 – 241.en_US
dc.identifier.citedreferenceNixon, K.C., Wheeler, Q.D., 1992. Extinction and the origin of species. In: Novacek, M.J. and Wheeler, Q.D., (Eds.), Extinction and Phylogeny. Columbia University Press, New York, pp. 119 – 143.en_US
dc.identifier.citedreferenceNoreen, E.W., 1989. Computer‐Intensive Methods for Testing Hypotheses: An Introduction. John Wiley and Sons, New York.en_US
dc.identifier.citedreferenceNovacek, M.J., 1992a. Fossils as critical data for phylogeny. In: Novacek, M.J. and Wheeler, Q.D., (Eds.), Extinction and Phylogeny. Columbia University Press, New York, pp. 46 – 88.en_US
dc.identifier.citedreferenceNovacek, M.J., 1992b. Fossils, topologies, missing data, and the higher level phylogeny of eutherian mammals. Syst. Biol. 41, 58 – 73.en_US
dc.identifier.citedreferenceO'Grady, R.T., Remsen, J., Gatesy, J., 2002. Partitioning of multiple data sets in phylogenetic analysis. In: DeSalle, R., Giribet, G., Wheeler, W.C., (Eds.), Techniques in Molecular Systematics and Evolution. Birkhäuser Verlag, Basel, Switzerland, pp. 102 – 119.en_US
dc.identifier.citedreferenceO'Leary, M.A., 1999. Parsimony analysis of total evidence from extinct and extant taxa and the cetacean‐artiodactyl question (Mammalia, Ungulata). Cladistics 15, 315 – 330.en_US
dc.identifier.citedreferenceO'Leary, M.A., Geisler, J.H., 1999. The position of Cetacea within Mammalia: phylogenetic analysis of morphological data from extinct and extant taxa. Syst. Biol. 48, 455 – 490.en_US
dc.identifier.citedreferenceOta, R., Waddell, P.J., Hasegawa, M., Shimodaira, H., Kishino, H., 2000. Appropriate likelihood ratio tests and marginal distributions for evolutionary tree models with constraints on parameters. Mol. Biol. Evol. 17, 798 – 803.en_US
dc.identifier.citedreferencePagel, M., 1999. Inferring the historical patterns of biological evolution. Nature 401, 877 – 884.en_US
dc.identifier.citedreferencePannell, D.J., 1997. Introduction to Practical Linear Programming. John Wiley and Sons, New York.en_US
dc.identifier.citedreferencePatterson, C., 1981. Significance of fossils in determining evolutionary relationships. Annu. Rev. Ecol. Syst. 12, 195 – 223.en_US
dc.identifier.citedreferencePenny, D., Hendy, M.D., 1985a. Testing methods of evolutionary tree construction. Cladistics 1, 266 – 278.en_US
dc.identifier.citedreferencePenny, D., Hendy, M.D., 1985b. The use of tree comparison metrics. Syst. Zool. 34, 75 – 82.en_US
dc.identifier.citedreferencePenny, D., Hendy, M.D., 1986. Estimating the reliability of evolutionary trees. Mol. Biol. Evol. 3, 403 – 417.en_US
dc.identifier.citedreferencePenny, D., Hendy, M.D., Lockhart, P.J., Steel, M.A., 1996. Corrected parsimony, minimum evolution, and Hadamard conjugations. Syst. Biol. 45, 596 – 606.en_US
dc.identifier.citedreferencePenny, D., Hendy, M.D., Zimmer, E.A., Hamby, R.K., 1990. Trees from sequences: Panacea or Pandora's box Aust. Syst. Bot. 3, 21 – 38.en_US
dc.identifier.citedreferencePenny, D., Watson, E.E., Hickson, R.E., Lockhart, P.J., 1993. Some recent progress with methods for evolutionary trees. New Zealand J. Bot. 31, 275 – 288.en_US
dc.identifier.citedreferencePhillips, A., Janies, D., Wheeler, W.C., 2000. Multiple sequence alignment in phylogenetic analysis. Mol. Phylogenet. Evol. 16, 317 – 330.en_US
dc.identifier.citedreferencePoe, S., 1998. Sensitivity of phylogeny estimation to taxonomic sampling. Syst. Biol. 47, 18 – 31.en_US
dc.identifier.citedreferencePogue, M.G., Mickevich, M.F., 1990. Character definitions and character state delineation: the bete noire of phylogenetic inference. Cladistics 6, 319 – 361.en_US
dc.identifier.citedreferencePol, D., Siddall, M., 2001. Biases in maximum likelihood and parsimony: a simulation approach to a 10‐taxon case. Cladistics 17, 266 – 281.en_US
dc.identifier.citedreferencePopper, K.R., 1959. The Logic of Scientific Discovery [1992 reprint of 1968 edition]. Routledge, London.en_US
dc.identifier.citedreferencePopper, K.R., 1979. Objective Knowledge: An Evolutionary Approach. Oxford University Press, New York.en_US
dc.identifier.citedreferencePopper, K.R., 1983. Realism and the Aim of Science. Routledge, London.en_US
dc.identifier.citedreferencePopper, K.R., 1990. A World of Propensities. Thoemmes, Bristol.en_US
dc.identifier.citedreferencePosada, D., Crandall, K.A., 2001a. Selecting models of nucleotide substitution: an application to Human Immunodeficiency Virus 1 (HIV‐1). Mol. Biol. Evol. 18, 897 – 906.en_US
dc.identifier.citedreferencePosada, D., Crandall, K.A., 2001b. Selecting the best‐fit model of nucleotide substitution. Syst. Biol. 50, 580 – 601.en_US
dc.identifier.citedreferencePosada, D., Crandall, K.A., 2001c. Simple (wrong) models for complex trees: a case from Retroviridae. Mol. Biol. Evol. 18, 271 – 275.en_US
dc.identifier.citedreferencePrager, E., Wilson, A., 1988. Ancient origin of lactalbumin from lysozyme: analysis of DNA and amino acid sequences. J. Mol. Evol. 27, 326 – 335.en_US
dc.identifier.citedreferencePrendini, L., 2000. Phylogeny and classification of the superfamily Scorpio no idea Latrelle 1802 (Chelicerata, Scorpiones): an exemplar approach. Cladistics 16, 1 – 78.en_US
dc.identifier.citedreferenceReed, R.D., Sperling, F.A., 1999. Interaction of process partitions in phylogenetic analysis: an example from the swallowtail butterfly genus Papilio. Mol. Biol. Evol. 16, 286 – 297.en_US
dc.identifier.citedreferenceRemsen, J., DeSalle, R., 1998. Character congruence of multiple data partitions and the origin of the Hawaiian Drosophilidae. Mol. Phylogenet. Evol. 9, 225 – 235.en_US
dc.identifier.citedreferenceResnik, D.B., 2001. Financial interests and research bias. Perspect. Sci. 8, 255 – 285.en_US
dc.identifier.citedreferenceRice, K.A., Donoghue, M.J., Olmstead, R.G., 1997. Analyzing large data sets: rbcL 500 revisited. Syst. Biol. 46, 554 – 563.en_US
dc.identifier.citedreferenceRodrigo, A.G., Kelly‐Borges, M., Bergquist, P.R., Bergquist, P.L., 1993. A randomisation test of the null hypothesis that two cladograms are sample estimates of a parametric tree. New Zealand J. Bot. 31, 257 – 268.en_US
dc.identifier.citedreferenceRohlf, F.J., 1963. Congruence of larval and adult classifications in Aedes (Diptera: Culicidae). Syst. Zool. 12, 97 – 117.en_US
dc.identifier.citedreferenceRohlf, F.J., 1965. A randomization test of the nonspecificity hypothesis in numerical taxonomy. Taxon 14, 262 – 267.en_US
dc.identifier.citedreferenceRohlf, F.J., 1974. Methods of comparing classifications. Annu. Rev. Ecol. Syst. 5, 101 – 113.en_US
dc.identifier.citedreferenceRohlf, F.J., 1982. Consensus indices for comparing classifications. Math. Biosci. 59, 131 – 144.en_US
dc.identifier.citedreferenceRohlf, F.J., Sokal, R.R., 1965. Coefficients of correlation and distance in numerical taxonomy. Univ. Kansas Sci. Bull. 45, 3 – 27.en_US
dc.identifier.citedreferenceRohlf, F.J., Sokal, R.R., 1980. Comments on taxonomic congruence. Syst. Zool. 29, 97 – 101.en_US
dc.identifier.citedreferenceRohlf, F.J., Sokal, R.R., 1981. Comparing numerical taxonomic studies. Syst. Zool. 30, 459 – 490.en_US
dc.identifier.citedreferenceRusso, C.A., Takezaki, N., Nei, M., 1996. Efficiencies of different genes and different tree‐building methods in recovering a known vertebrate phylogeny. Mol. Biol. Evol. 13, 525 – 536.en_US
dc.identifier.citedreferenceRzhetsky, A., Nei, M., 1992. Statistical properties of the ordinary least‐squares, generalized least‐squares, and minimum evolution methods of phylogenetic inference. J. Mol. Evol. 35, 367 – 375.en_US
dc.identifier.citedreferenceSalducci, M.‐D., Marty, C., Chappaz, R., Gilles, A., 2002. Molecular phylogeny of French Guiana Hylinae: implications for the systematic and biodiversity of the Neotropical frogs. C.R. Biol. 325, 141 – 153.en_US
dc.identifier.citedreferenceSalisbury, B.A., 1999. Strongest evidence: maximum apparent phylogenetic signal as a new cladistic optimality criterion. Cladistics 15, 137 – 149.en_US
dc.identifier.citedreferenceSalmon, W.C., 1966. The Foundations of Scientific Inference. University of Pittsburgh Press, Pittsburgh, PA.en_US
dc.identifier.citedreferenceSanderson, M.J., 1995. Objections to bootstrapping: a critique. Syst. Biol. 44, 299 – 320.en_US
dc.identifier.citedreferenceSanderson, M.J., Kim, J., 2000. Parametric phylogenetics Syst. Biol. 49, 817 – 829.en_US
dc.identifier.citedreferenceSanderson, M.J., Wojciechowski, M.F., 2000. Improved bootstrap confidence limits in large‐scale phylogenies, with an example from Neo‐Astragalus (Leguminosae). Syst. Biol. 49, 671 – 685.en_US
dc.identifier.citedreferenceSchuh, R.T., Farris, J.S., 1981. Methods for investigating taxonomic congruence and their application to the Leptopodomorpha. Syst. Zool. 30, 331 – 351.en_US
dc.identifier.citedreferenceSiddall, M.E., 1995. Another monophyly index: revisiting the jack‐knife. Cladistics 11, 33 – 56.en_US
dc.identifier.citedreferenceSiddall, M.E., 1997. Prior agreement: arbitration or arbitrary Syst. Biol. 46, 765 – 769.en_US
dc.identifier.citedreferenceSiddall, M.E., 1998. Success of parsimony in the four‐taxon case: long‐branch repulsion by likelihood in the Farris Zone. Cladistics 14, 209 – 220.en_US
dc.identifier.citedreferenceSiddall, M.E., 2001. Computer‐intensive randomization in systematics. Cladistics 17, S35 – S52.en_US
dc.identifier.citedreferenceSiddall, M.E., 2002a. Measures of support. In: DeSalle, R., Giribet, G. and Wheeler, W.C., (Eds.), Techniques in Molecular Systematics and Evolution. Birkhäuser Verlag, Basel, Switzerland, pp. 80 – 101.en_US
dc.identifier.citedreferenceSiddall, M.E., 2002b. Philosophy and phylogenetic inference: a comparison of likelihood and parsimony methods in the context of Karl Popper's writings on corroboration. Cladistics 17, 395 – 399.en_US
dc.identifier.citedreferenceSiddall, M.E., Kluge, A.G., 1997. Probabilism and phylogenetic inference. Cladistics 13, 313 – 336.en_US
dc.identifier.citedreferenceSiddall, M.E., Whiting, M.F., 1999. Long‐branch abstractions. Cladistics 15, 9 – 24.en_US
dc.identifier.citedreferenceSimmons, M.P., Randle, C.P., Freudenstein, J.V., Wenzel, J.W., 2002. Limitations of Relative Apparent Synapomorphy Analysis (RASA) for measuring phylogenetic signal. Mol. Biol. Evol. 19, 14 – 23.en_US
dc.identifier.citedreferenceSimmons, N.B., 2001. Misleading results from the use of ambiguity coding to score polymorphisms in higher‐level taxa. Syst. Biol. 50, 613 – 620.en_US
dc.identifier.citedreferenceSmith, E.N., Gutberlet Jr., R.L., 2001. Generalized frequency coding: a method of preparing polymorphic multistate characters for phylogenetic analysis. Syst. Biol. 50, 156 – 169.en_US
dc.identifier.citedreferenceSneath, P.H.A., Sokal, R.R., 1962. Numerical taxonomy. Nature 193, 855 – 860.en_US
dc.identifier.citedreferenceSneath, P.H.A., Sokal, R.R., 1973. Numerical Taxonomy. W.H. Freeman, San Francisco.en_US
dc.identifier.citedreferenceSober, E., 1988. Reconstructing the Past. The MIT Press, Cambridge, MA.en_US
dc.identifier.citedreferenceSokal, R.R., Rohlf, F.J., 1981. Biometry. W.H. Freeman, San Fransisco.en_US
dc.identifier.citedreferenceSokal, R.R., Sneath, P.H.A., 1963. Principles of Numerical Taxonomy. Freeman, San Francisco.en_US
dc.identifier.citedreferenceSteel, M.A., 1994. The maximum likelihood point for a phylogenetic tree is not unique. Syst. Biol. 43, 560 – 564.en_US
dc.identifier.citedreferenceSteel, M.A., Hendy, M.D., Penny, D., 1993a. Parsimony can be consistent!. Syst. Biol. 42, 581 – 587.en_US
dc.identifier.citedreferenceSteel, M.A., Lockhart, P.J., Penny, D., 1993b. Confidence in evolutionary trees from biological sequence data. Nature 364, 440 – 442.en_US
dc.identifier.citedreferenceSteel, M.A., Penny, D., 2000. Parsimony, likelihood, and the role of models in molecular phylogenetics. Mol. Biol. Evol. 17, 839 – 850.en_US
dc.identifier.citedreferenceSullivan, J., Swofford, D., 1997. Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics. J. Mammal. Evol. 4, 77 – 86.en_US
dc.identifier.citedreferenceSwofford, D., 1991. When are phylogeny estimates from molecular and morphological data incongruent? In: Miyamoto, M.M. and Cracraft, J., (Eds.), Phylogenetic Analysis of DNA Sequences. Oxford University Press, New York, pp. 295 – 333.en_US
dc.identifier.citedreferenceSwofford, D., Olsen, G.J., Waddell, P.J., Hillis, D.M., 1996. Phylogenetic inference. In: Hillis, D.M., Moritz, C. and Mable, B.K. (Eds.), Molecular Systematics. Sinauer, Sunderland, pp. 407 – 514.en_US
dc.identifier.citedreferenceSwofford, D.L., Berlocher, S.H., 1987. Inferring evolutionary trees from gene frequency data under the principle of maximum parsimony. Syst. Zool. 36, 293 – 325.en_US
dc.identifier.citedreferenceSystematic Biology: Instructions for authors. 2002. Systematic Biology: Instructions for authors. Available from http://systbiol.org/info/instrauth. html.en_US
dc.identifier.citedreferenceTeeling, E.C., Scally, M., Kao, D.J., Romagnoli, M.L., Springer, M.S., Stanhope, M.J., 2000. Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403, 188 – 192.en_US
dc.identifier.citedreferenceTempleton, A.R., 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37, 221 – 244.en_US
dc.identifier.citedreferenceThiele, K., 1993. The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics 9, 275 – 304.en_US
dc.identifier.citedreferenceThompson, E.A., 1975. Human Evolutionary Trees. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceThrockmorton, L.H., 1968. Concordance and discordance of taxonomic characters in Drosophila classification. Syst. Zool. 17, 355 – 387.en_US
dc.identifier.citedreferenceTuffley, C., Steel, M., 1997. Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bull. Math. Biol. 59, 581 – 607.en_US
dc.identifier.citedreferencevon Wright, G.H., 1984. Philosophical Logic. Cornell University Press, Ithaca.en_US
dc.identifier.citedreferenceWägele, J.‐W., Misof, B., 2001. On quality of evidence in phylogeny reconstruction: a reply to Zrzavy's defence of the ‘Ecdysozoa’ hypothesis. J. Zool. Syst. Evol. Res. 39, 165 – 176.en_US
dc.identifier.citedreferenceWakeley, 1996. The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends. Ecol. Evol. 11, 158 – 163.en_US
dc.identifier.citedreferenceWatkins, J., 1997. Popperian ideas on progress and rationality in science. Crit. Rationalist 2, 2 – 11.en_US
dc.identifier.citedreferenceWenzel, J.W., 1997. When is a phylogenetic test good enough?. In: Grandcolas, P., (Ed.), The Origin of Biodiversity in Insects: Phylogenetic Tests Evolutionary Scenarios. Mem. Mus. Natn. Hist. Nat. Paris, pp. 31 – 45.en_US
dc.identifier.citedreferenceWenzel, J.W., Carpenter, J.M., 1994. Comparing methods: adaptive traits and tests of adaptation. In: Eggleton, P., Vane‐Wright, R.I., (Eds.), Comparing Methods: Adaptive Traits and Tests of Adaptation. Academic Press, London, pp. 51 – 64.en_US
dc.identifier.citedreferenceWenzel, J.W., Siddall, M., 1999. Noise. Cladistics 15, 51 – 64.en_US
dc.identifier.citedreferenceWest, J.G., Faith, D.P., 1990. Data, methods and assumptions in phylogenetic inference. Aust. Syst. Bot. 3, 9 – 20.en_US
dc.identifier.citedreferenceWheeler, W.C., 1991. Congruence among data sets: A Bayesian approach. In: Miyamoto, M.M. and Cracraft, J., (Eds.), Phylogenetic Analysis of DNA Sequences. Oxford University Press, New York, pp. 334 – 346.en_US
dc.identifier.citedreferenceWheeler, W.C., 1995. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst. Biol. 44, 321 – 331.en_US
dc.identifier.citedreferenceWheeler, W.C., 1996. Optimization alignment: the end of multiple sequence alignment in phylogenetics Cladistics 12, 1 – 9.en_US
dc.identifier.citedreferenceWheeler, W.C., 1999. Measuring topological congruence by extending character techniques. Cladistics 15, 131 – 135.en_US
dc.identifier.citedreferenceWheeler, W.C., 2000. Heuristic reconstruction of hypothetical‐ancestral DNA sequences: Sequence alignment vs optimization. In: Scotland, R.W. and Pennington, R.T., (Eds.), Homology and Systematics. Taylor and Francis, New York, pp. 106 – 113.en_US
dc.identifier.citedreferenceWheeler, W.C., Gladstein, D., De Laet, J., 19962002. POY: Phylogeny Reconstruction via Optimization of DNA Data. Ver. 3.0. Available from http://ftp.amnh.org/pub/molecular/poy.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.