Show simple item record

Variability of in‐stream and riparian storage in a beaded arctic stream

dc.contributor.authorMerck, M. F.en_US
dc.contributor.authorNeilson, B. T.en_US
dc.contributor.authorCory, R. M.en_US
dc.contributor.authorKling, G. W.en_US
dc.date.accessioned2012-09-05T14:46:02Z
dc.date.available2013-10-18T17:47:29Zen_US
dc.date.issued2012-09-15en_US
dc.identifier.citationMerck, M. F.; Neilson, B. T.; Cory, R. M.; Kling, G. W. (2012). "Variability of in‐stream and riparian storage in a beaded arctic stream." Hydrological Processes 26(19): 2938-2950. <http://hdl.handle.net/2027.42/93522>en_US
dc.identifier.issn0885-6087en_US
dc.identifier.issn1099-1085en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93522
dc.description.abstractThe extent and variability of water storage and residence times throughout the open water season in beaded arctic streams are poorly understood. Data collected in Imnavait Creek, a beaded stream located north of the Brooks Range in Alaska, were used to better understand the effects of in‐pool and riparian storage on heat and mass movement through beaded streams. Temperature data of high spatial resolution within the pools and surrounding sediments were used with volumetric discharge and electrical conductivity to identify storage areas within the pools, banks, and other marshy areas within the riparian zone, including subsurface flow paths that connect the pools. These subsurface flows were found to alter water conductivity and the character of dissolved organic matter (DOM) in short reaches (10 s of m) while influencing the chemistry of downstream pools. During low flow periods, persistent stratification occurred within the pools due to absorption of solar radiation by DOM coupled with permafrost below and low wind stress at the pool surface. Additionally, one of the shallow pools (<0.5 m depth) remained stratified during higher flow periods and lower radiation inputs due to dense subsurface flows entering the bottom of the pools. This consistent separation of surface and bottom water masses in each pool will increase the travel times through this and similar arctic watersheds, and therefore will affect the evolution of water chemistry and material export. Copyright © 2011 John Wiley & Sons, Ltd.en_US
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherBeaded Streamen_US
dc.subject.otherHydrologic Connectivityen_US
dc.subject.otherArctic Hydrologyen_US
dc.subject.otherThermal Stratificationen_US
dc.titleVariability of in‐stream and riparian storage in a beaded arctic streamen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeography and Mapsen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbsecondlevelCivil and Environmental Engineeringen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93522/1/hyp8323.pdf
dc.identifier.doi10.1002/hyp.8323en_US
dc.identifier.sourceHydrological Processesen_US
dc.identifier.citedreferenceMorrice, JA, Valett HM, Dahm CD, Campana ME. 1997. Alluvial characteristics, groundwater‐surface water exchange and hydrological retention in headwater streams. Hydrological Processes 11 ( 3 ): 253 – 267. DOI: 10.1002/(SICI)1099‐1085(19970315)11:3<253::AID‐HYP439>3.0.CO;2‐J.en_US
dc.identifier.citedreferenceHinzman LD, Kane DL, Gieck RE, Everett KR. 1991. Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Regions Science and Technology 19 ( 2 ): 95 – 110. DOI: 10.1016/0165‐232X(91)90001‐W.en_US
dc.identifier.citedreferenceIrons JG III, Oswood MW. 1992. Seasonal temperature patterns in an arctic and two subarctic Alaskan (USA) headwater streams. Hydrobiologia 237 ( 3 ): 147 – 157. DOI: 10.1007/BF00005847.en_US
dc.identifier.citedreferenceJaffe R, McKnight DM, Maie N, Cory R, McDowell WH, Campbell JL. 2008. Spatial and temporal variations in DOM composition in ecosystems: the importance of long‐term monitoring of optical properties. Journal of Geophysical Research 113: DOI: 10.1029/2008JG000683en_US
dc.identifier.citedreferenceKane DL, Hinzman LD, Benson CS, Everett KR. 1989. Hydrology of Imnavait Creek, an arctic watershed. Holarctic Ecology 12 ( 3 ): 262 – 269. DOI: 10.1111/j.1600‐0587.1989.tb00845.x.en_US
dc.identifier.citedreferenceKane DL, Hinzman LD, McNamara JP, Zhang Z, Benson CS. 2000. An overview of a nested watershed study in Arctic Alaska. Nordic Hydrology 31 ( 4–5 ): 245 – 266. DOI: 10.2166/nh.2000.015.en_US
dc.identifier.citedreferenceKane DL, Gieck RE, Kitover DC, Hinzman LD, McNamara JP, Yang D. 2004. Hydrological cycle on the North Slope of Alaska. In Northern Research Basins Water Balance, Kane DL, Yang D (eds). IAHS Publication 290, IAHS Press: Wallingford; 224 – 236.en_US
dc.identifier.citedreferenceKling GW. 1995. Land‐water linkages: the influence of terrestrial diversity on aquatic systems. In The Role of Biodiversity in Arctic and Alpine Tundra Ecosystems, Chapin FS III, Korner C (eds). Springer: Berlin; 297 – 310.en_US
dc.identifier.citedreferenceMcGlynn B, McDonnell JJ, Shanley J, Kendall C. 1999. Riparian zone flowpath dynamics during snowmelt in a small headwater catchment. Journal of Hydrology 222 ( 1–4 ): 75 – 92. DOI: 10.1016/S0022‐1694(99)00102‐X.en_US
dc.identifier.citedreferenceMcGuire KJ, Weiler M, McDonnell JJ. 2007. Integrating tracer experiments with modeling to assess runoff processes and water transit time. Advances in Water Resources 30 ( 4 ): 824 – 837. DOI: 10.1016/j.advwatres.2006.07.004.en_US
dc.identifier.citedreferenceMcKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46 ( 1 ): 38 – 48. DOI: 10.4319/lo.2001.46.1.0038.en_US
dc.identifier.citedreferenceMcKnight DM, Hood E, Klapper L. 2003. Trace organic moieties of dissolved organic material in natural waters. In Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, Findlay SEG, Sinsabaugh RL (eds). Elsevier Science: USA; 71 – 96.en_US
dc.identifier.citedreferenceMcNamara JP, Kane DL, Hinzman LD. 1997. Hydrograph separations in an arctic watershed using mixing model and graphical techniques. Water Resources Research 33 ( 7 ): 1707 – 1719. DOI: 10.1029/97WR01033.en_US
dc.identifier.citedreferenceMcNamara JP, Kane DL, Hinzman LD. 1998. An analysis of streamflow hydrology in the Kuparuk River Basin, Arctic Alaska: a nested watershed approach. Journal of Hydrology 206 ( 1–2 ): 39 – 57. DOI: 10.1016/S0022‐1694(98)00083‐3.en_US
dc.identifier.citedreferenceMcNamara JP, Kane DL, Hobbie JE, Kling GW. 2008. Hydrologic and biogeochemical controls on the spatial and temporal patterns of nitrogen and phosphorus in the Kuparuk River, arctic Alaska. Hydrological Processes 22 ( 17 ): 3294 – 3309. DOI: 10.1002/hyp.6920.en_US
dc.identifier.citedreferenceMiller MP, Simone BE, McKnight DM, Cory RM, Williams MW, Boyer EW. 2010. New light on a dark subject: comment. Aquatic Sciences 72: 269 – 275. DOI: 10.1007/s00027‐010‐0130‐2.en_US
dc.identifier.citedreferenceMiller MP, McKnight DM, Cory RM, Williams MW, Runkel RL. 2006. Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado Front Range. Environmental Science and Technology 40 ( 19 ): 5943 – 5949. DOI: 10.1021/es060635j.en_US
dc.identifier.citedreferenceMulholland PJ, Wilson GV, Jardine PM. 1990. Hydrogeochemical response of a forested watershed to storms: effects of preferential flow along shallow and deep pathways. Water Resources Research 26 ( 12 ): 3021 – 3036. DOI: 10.1029/WR026i012p03021.en_US
dc.identifier.citedreferenceNeilson BT, Stevens DK, Chapra SC, Bandaragoda C. 2009. Data collection methodology for dynamic temperature model testing and corroboration. Hydrological Processes 23 ( 20 ): 2902 – 2914. DOI: 10.1002/hyp.7381.en_US
dc.identifier.citedreferenceNeilson BT, Hatch CE, Ban H, Tyler SW. 2010. Solar radiative heating of fiber‐optic cables used to monitor temperatures in water. Water Resources Research 46: W08540. DOI: 10.1029/2009WR008354.en_US
dc.identifier.citedreferenceOsterkamp TE, Payne MW. 1981. Estimates of permafrost thickness from well logs in northern Alaska. Cold Regions Science and Technology 5 ( 1 ): 13 – 27. DOI: 10.1016/0165‐232X(81)90037‐9.en_US
dc.identifier.citedreferenceSoudzilovskaia NA, Cornelissen JHC, During HJ, van Logtestijn RSP, Lang SI, Aerts R. 2010. Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification. Ecology 91: 2716 – 2726.en_US
dc.identifier.citedreferenceStedmon CA, Markager S, Bro R. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry 82: 239 – 254. DOI: 10.1016/S0304‐4203(03)00072‐0.en_US
dc.identifier.citedreferenceStieglitz M, Shaman J, McNamara J, Engel V, Shanley J, Kling GW. 2003. An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport. Global Biogeochemical Cycles 17 ( 4 ): 1105. DOI: 10.1029/2003 GB002041.en_US
dc.identifier.citedreferenceZarnetske JP, Gooseff MN, Brosten TR, Bradford JH, McNamara JP, Bowden BW. 2007. Transient storage as a function of geomorphology, discharge, and permafrost active layer conditions in Arctic tundra streams. Water Resources Research 43: W07410. DOI: 10.1029/2005WR004816.en_US
dc.identifier.citedreferenceHood E, McKnight DM, Williams MW. 2003. Sources and chemical character of dissolved organic carbon across an alpine/subalpine ecotone, Green Lakes Valley, Colorado Front Range, United States. Water Resources Research 39 ( 7 ): 1188. DOI: 10.1029/2002WR001738en_US
dc.identifier.citedreferenceHuang W, Chen RF. 2009. Sources and transformations of chromophoric dissolved organic matter in the Neponset River Watershed. Journal of Geophysical Research 114: G00F05, DOI: 10.1029/2009JG000976en_US
dc.identifier.citedreferenceInamdar S, Rupp J, Mitchell M. 2009. Groundwater flushing of solutes at wetland and hillslope positions during storm events in a small glaciated catchment in western New York, USA. Hydrologic Processes 23 ( 13 ): 1912 – 1926. DOI: 10.1002/hyp.7322.en_US
dc.identifier.citedreferenceBencala KE, Walters RA. 1983. Simulation of solute transport in a mountain pool‐and‐riffle stream: a transient storage model. Water Resources Research 19 ( 3 ): 718 – 724. DOI: 10.1029/WR019i003p00718.en_US
dc.identifier.citedreferenceBense VF, Kooi H. 2004. Temporal and spatial variations of shallow subsurface temperature as a record of lateral variations in groundwater flow. Journal of Geophysical Research 109: B04103. DOI: 10.1029/2003JB002782.en_US
dc.identifier.citedreferenceBrooks PD, Williams MW. 1999. Snowpack controls on nitrogen cycling and export in seasonally snow‐covered catchments. Hydrological Processes 13 ( 14–15 ): 2177 – 2190. DOI: 10.1002/(SICI)1099‐1085(199910)13:14/15 < 2177::AID‐HYP850 > 3.0.CO;2‐V.en_US
dc.identifier.citedreferenceChapin FS III, Miller PC, Billings WD, Coyne PI. 1980. Carbon and nutrient budgets and their control in coastal tundra. In An Arctic Ecosystem: the Coastal Tundra at Barrow, Alaska, Brown J, Miller PC, Tieszen LL, Bunnell FL (eds). Dowden, Hutchinson & Ross: Stroudsburg; 458 – 482.en_US
dc.identifier.citedreferenceCirmo C, McDonnell J. 1997. Linking the hydrologic and biogeochemical controls of nitrogen transport in near‐stream zones of temperate‐forested catchments: a review. Journal of Hydrology 199 ( 1–2 ): 88 – 120. DOI: 10.1016/S0022‐1694(96)03286‐6.en_US
dc.identifier.citedreferenceClymo RS. 1963. Ion exchange in Sphagnum and its relation to bog ecology. Annals of Botany 27: 309 – 324.en_US
dc.identifier.citedreferenceCory RM, McKnight DM. 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science and Technology 39 ( 21 ): 8142 – 8149. DOI: 10.1021/es0506962.en_US
dc.identifier.citedreferenceCory RM, McKnight DM, Chin YP, Miller P, Jaros CL. 2007. Chemical characteristics of fulvic acids from Arctic surface waters: microbial contributions and photochemical transformations. Journal of Geophysical Research 112: G04S51. DOI: 10.1029/2006JG000343.en_US
dc.identifier.citedreferenceCory RM, Miller MP, McKnight DM, Guerard JJ, Miller PL. 2010. Effect of instrument‐specific response on the analysis of fulvic acid fluorescence spectra. Limnology and Oceanography: Methods 8: 67 – 78. DOI: 10.4319/lom.2010.8.67.en_US
dc.identifier.citedreferenceCory RM, Boyer EW, McKnight DM. 2011. Spectral Methods to Advance Understanding of Dissolved Organic Carbon Dynamics in Forested Catchments. In Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, Ecological Studies 216, Levia DF et al. (eds). 115 – 135: DOI: 10.1007/978‐94‐007‐1363‐5_6.en_US
dc.identifier.citedreferenceDeRose PC, Smith MV, Mielenz KD, Blackburn DH, Kramer GW. 2009. Characterization of Standard Reference Material 2940, Mn‐ion‐doped glass, spectral correction standard for fluorescence. Journal of Luminescence 129 ( 4 ): 349 – 355. DOI: 10.1016/j.jlumin.2008.10.017.en_US
dc.identifier.citedreferenceEdlund SA, Woo M‐K, Young KL. 1990. Climate, hydrology and vegetation patterns. Hot Weather Creek, Ellesmere Island, Arctic Canada. Nordic Hydrology 21: 273 – 286. DOI: 10.2166/nh.1990.020.en_US
dc.identifier.citedreferenceEdwardson KJ, Bowden WB, Dahm C, Morrice J. 2003. The hydraulic characteristics and geochemistry of hyporheic and parafluvial zones in Arctic tundra streams, north slope, Alaska. Advances in Water Resources 26 ( 9 ): 907 – 923. DOI: 10.1016/S0309‐1708(03)00078‐2.en_US
dc.identifier.citedreferenceFimmen RL, Cory RM, Chin YP, Trouts TD, McKnight DM. 2007. Probing the oxidation‐reduction properties of terrestrially and microbially derived dissolved organic matter. Geochimica et Cosmochimica Acta 71 ( 12 ): 3003 – 3015. DOI: 10.1016/j.gca.2007.04.009.en_US
dc.identifier.citedreferenceHelms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography 53 ( 3 ): 955 – 969en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.