Show simple item record

Menin as a hub controlling mixed lineage leukemia

dc.contributor.authorThiel, Austin T.en_US
dc.contributor.authorHuang, Jingen_US
dc.contributor.authorLei, Mingen_US
dc.contributor.authorHua, Xianxinen_US
dc.date.accessioned2012-09-05T14:46:04Z
dc.date.available2013-10-18T17:47:29Zen_US
dc.date.issued2012-09en_US
dc.identifier.citationThiel, Austin T.; Huang, Jing; Lei, Ming; Hua, Xianxin (2012). "Menin as a hub controlling mixed lineage leukemia." BioEssays 34(9): 771-780. <http://hdl.handle.net/2027.42/93527>en_US
dc.identifier.issn0265-9247en_US
dc.identifier.issn1521-1878en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93527
dc.description.abstractMixed lineage leukemia (MLL) fusion protein (FP)‐induced acute leukemia is highly aggressive and often refractory to therapy. Recent progress in the field has unraveled novel mechanisms and targets to combat this disease. Menin, a nuclear protein, interacts with wild‐type (WT) MLL, MLL‐FPs, and other partners such as the chromatin‐associated protein LEDGF and the transcription factor C‐Myb to promote leukemogenesis. The newly solved co‐crystal structure illustrating the menin–MLL interaction, coupled with the role of menin in recruiting both WT MLL and MLL‐FPs to target genes, highlights menin as a scaffold protein and a central hub controlling this type of leukemia. The menin/WT MLL/MLL‐FP hub may also cooperate with several signaling pathways, including Wnt, GSK3, and bromodomain‐containing Brd4‐related pathways to sustain MLL‐FP‐induced leukemogenesis, revealing new therapeutic targets to improve the treatment of MLL‐FP leukemias. In MLL fusion protein‐induced leukemias, menin is a central hub due to its role in recruiting WT MLL and MLL‐FPs to target genes. Menin also links C‐Myb/LEDGF to the MLL N‐terminus, underscoring menin's central role. Targeting menin may be especially effective due to its hub role in MLL fusion leukemias.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherMeninen_US
dc.subject.otherLeukemiaen_US
dc.subject.otherTherapyen_US
dc.subject.otherChromatinen_US
dc.subject.otherMLLen_US
dc.titleMenin as a hub controlling mixed lineage leukemiaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan, Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumHoward Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherAbramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.en_US
dc.contributor.affiliationotherDepartment of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USAen_US
dc.identifier.pmid22829075en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93527/1/771_ftp.pdf
dc.identifier.doi10.1002/bies.201200007en_US
dc.identifier.sourceBioEssaysen_US
dc.identifier.citedreferenceAyton PM, Chen EH, Cleary ML. 2004. Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol Cell Biol 24: 10470 – 8.en_US
dc.identifier.citedreferenceYang Z, Yik JH, Chen R, He N, et al. 2005. Recruitment of P‐TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 19: 535 – 45.en_US
dc.identifier.citedreferenceDawson MA, Prinjha RK, Dittmann A, Giotopoulos G, et al. 2011. Inhibition of BET recruitment to chromatin as an effective treatment for MLL‐fusion leukaemia. Nature 478: 529 – 33.en_US
dc.identifier.citedreferenceMuntean AG, Tan J, Sitwala K, Huang Y, et al. 2010. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 17: 609 – 21.en_US
dc.identifier.citedreferenceCaslini C, Yang Z, El‐Osta M, Milne TA, et al. 2007. Interaction of MLL amino terminal sequences with menin is required for transformation. Cancer Res 67: 7275 – 83.en_US
dc.identifier.citedreferenceGrembecka J, He S, Shi A, Purohit T, et al. 2012. Menin‐MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 8: 277 – 84.en_US
dc.identifier.citedreferenceYokoyama A, Wang Z, Wysocka J, Sanyal M, et al. 2004. Leukemia proto‐oncoprotein MLL forms a SET1‐like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24: 5639 – 49.en_US
dc.identifier.citedreferenceHuang J, Gurung B, Wan B, Matkar S, et al. 2012. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature 482: 542 – 6.en_US
dc.identifier.citedreferenceMurai MJ, Chruszcz M, Reddy G, Grembecka J, et al. 2011. Crystal structure of menin reveals binding site for mixed lineage leukemia (MLL) protein. J Biol Chem 286: 31742 – 8.en_US
dc.identifier.citedreferenceAllen MD, Grummitt CG, Hilcenko C, Min SY, et al. 2006. Solution structure of the nonmethyl‐CpG‐binding CXXC domain of the leukaemia‐associated MLL histone methyltransferase. EMBO J 25: 4503 – 12.en_US
dc.identifier.citedreferenceCierpicki T, Risner LE, Grembecka J, Lukasik SM, et al. 2010. Structure of the MLL CXXC domain‐DNA complex and its functional role in MLL‐AF9 leukemia. Nat Struct Mol Biol 17: 62 – 8.en_US
dc.identifier.citedreferenceHe H, Hua X, Yan J. 2011. Epigenetic regulations in hematopoietic Hox code. Oncogene 30: 379 – 88.en_US
dc.identifier.citedreferenceFaber J, Krivtsov AV, Stubbs MC, Wright R, et al. 2009. HOXA9 is required for survival in human MLL‐rearranged acute leukemias. Blood 113: 2375 – 85.en_US
dc.identifier.citedreferenceArai S, Yoshimi A, Shimabe M, Ichikawa M, et al. 2011. Evi‐1 is a transcriptional target of mixed‐lineage leukemia oncoproteins in hematopoietic stem cells. Blood 117: 6304 – 14.en_US
dc.identifier.citedreferencePeifer M, Sweeton D, Casey M, Wieschaus E. 1994. wingless signal and Zeste‐white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 120: 369 – 80.en_US
dc.identifier.citedreferenceOrford K, Crockett C, Jensen JP, Weissman AM, et al. 1997. Serine phosphorylation‐regulated ubiquitination and degradation of beta‐catenin. J Biol Chem 272: 24735 – 8.en_US
dc.identifier.citedreferenceWang Z, Smith KS, Murphy M, Piloto O, et al. 2008. Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 455: 1205 – 9.en_US
dc.identifier.citedreferenceWang Z, Iwasaki M, Ficara F, Lin C, et al. 2010. GSK‐3 promotes conditional association of CREB and its coactivators with MEIS1 to facilitate HOX‐mediated transcription and oncogenesis. Cancer Cell 17: 597 – 608.en_US
dc.identifier.citedreferenceYeung J, Esposito MT, Gandillet A, Zeisig BB, et al. 2010. Beta‐catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 18: 606 – 18.en_US
dc.identifier.citedreferenceWang Y, Krivtsov AV, Sinha AU, North TE, et al. 2010. The Wnt/beta‐catenin pathway is required for the development of leukemia stem cells in AML. Science 327: 1650 – 3.en_US
dc.identifier.citedreferenceSykes SM, Lane SW, Bullinger L, Kalaitzidis D, et al. 2011. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 146: 697 – 708.en_US
dc.identifier.citedreferenceJeannet G, Scheller M, Scarpellino L, Duboux S, et al. 2008. Long‐term, multilineage hematopoiesis occurs in the combined absence of beta‐catenin and gamma‐catenin. Blood 111: 142 – 9.en_US
dc.identifier.citedreferenceGoessling W, North TE, Loewer S, Lord AM, et al. 2009. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136: 1136 – 47.en_US
dc.identifier.citedreferenceKarp JE, Smith BD, Resar LS, Greer JM, et al. 2011. Phase 1 and pharmacokinetic study of bolus‐infusion flavopiridol followed by cytosine arabinoside and mitoxantrone for acute leukemias. Blood 117: 3302 – 10.en_US
dc.identifier.citedreferenceByrd JC, Lin TS, Dalton JT, Wu D, et al. 2007. Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high‐risk chronic lymphocytic leukemia. Blood 109: 399 – 404.en_US
dc.identifier.citedreferenceZuber J, Shi J, Wang E, Rappaport AR, et al. 2011. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478: 524 – 8.en_US
dc.identifier.citedreferenceFilippakopoulos P, Qi J, Picaud S, Shen Y, et al. 2010. Selective inhibition of BET bromodomains. Nature 468: 1067 – 73.en_US
dc.identifier.citedreferenceMcMahon KA, Hiew SY, Hadjur S, Veiga‐Fernandes H, et al. 2007. Mll has a critical role in fetal and adult hematopoietic stem cell self‐renewal. Cell Stem Cell 1: 338 – 45.en_US
dc.identifier.citedreferenceJude CD, Climer L, Xu D, Artinger E, et al. 2007. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 1: 324 – 37.en_US
dc.identifier.citedreferenceGan T, Jude CD, Zaffuto K, Ernst P. 2010. Developmentally induced Mll1 loss reveals defects in postnatal haematopoiesis. Leukemia 24: 1732 – 41.en_US
dc.identifier.citedreferenceMeyer C, Kowarz E, Hofmann J, Renneville A, et al. 2009. New insights to the MLL recombinome of acute leukemias. Leukemia 23: 1490 – 9.en_US
dc.identifier.citedreferenceDaser A, Rabbitts TH. 2004. Extending the repertoire of the mixed‐lineage leukemia gene MLL in leukemogenesis. Genes Dev 18: 965 – 74.en_US
dc.identifier.citedreferenceHolleman A, Cheok MH, den Boer ML, Yang W, et al. 2004. Gene‐expression patterns in drug‐resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 351: 533 – 42.en_US
dc.identifier.citedreferenceLiu H, Cheng EH, Hsieh JJ. 2009. MLL fusions: pathways to leukemia. Cancer Biol Ther 8: 1204 – 11.en_US
dc.identifier.citedreferenceHsieh JJ, Ernst P, Erdjument‐Bromage H, Tempst P, et al. 2003. Proteolytic cleavage of MLL generates a complex of N‐ and C‐terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol 23: 186 – 94.en_US
dc.identifier.citedreferenceYokoyama A, Cleary ML. 2008. Menin critically links MLL proteins with LEDGF on cancer‐associated target genes. Cancer Cell 14: 36 – 46.en_US
dc.identifier.citedreferenceJin S, Zhao H, Yi Y, Nakata Y, et al. 2010. c‐Myb binds MLL through menin in human leukemia cells and is an important driver of MLL‐associated leukemogenesis. J Clin Invest 120: 593 – 606.en_US
dc.identifier.citedreferenceMilne TA, Kim J, Wang GG, Stadler SC, et al. 2010. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol Cell 38: 853 – 63.en_US
dc.identifier.citedreferenceChen YX, Yan J, Keeshan K, Tubbs AT, et al. 2006. The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. Proc Natl Acad Sci USA 103: 1018 – 23.en_US
dc.identifier.citedreferenceDou Y, Milne TA, Ruthenburg AJ, Lee S, et al. 2006. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 13: 713 – 9.en_US
dc.identifier.citedreferenceNakamura T, Mori T, Tada S, Krajewski W, et al. 2002. ALL‐1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10: 1119 – 28.en_US
dc.identifier.citedreferenceTerranova R, Agherbi H, Boned A, Meresse S, et al. 2006. Histone and DNA methylation defects at Hox genes in mice expressing a SET domain‐truncated form of Mll. Proc Natl Acad Sci USA 103: 6629 – 34.en_US
dc.identifier.citedreferencePineault N, Helgason CD, Lawrence HJ, Humphries RK. 2002. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 30: 49 – 57.en_US
dc.identifier.citedreferenceMaillard I, Chen YX, Friedman A, Yang Y, et al. 2009. Menin regulates the function of hematopoietic stem cells and lymphoid progenitors. Blood 113: 1661 – 9.en_US
dc.identifier.citedreferenceAyton PM, Cleary ML. 2003. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 17: 2298 – 307.en_US
dc.identifier.citedreferenceZeisig BB, Milne T, Garcia‐Cuellar MP, Schreiner S, et al. 2004. Hoxa9 and Meis1 are key targets for MLL‐ENL‐mediated cellular immortalization. Mol Cell Biol 24: 617 – 28.en_US
dc.identifier.citedreferenceKroon E, Krosl J, Thorsteinsdottir U, Baban S, et al. 1998. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 17: 3714 – 25.en_US
dc.identifier.citedreferenceThiel AT, Blessington P, Zou T, Feather D, et al. 2010. MLL‐AF9‐induced leukemogenesis requires coexpression of the wild‐type Mll allele. Cancer Cell 17: 148 – 59.en_US
dc.identifier.citedreferenceMuntean AG, Hess JL. 2012. The pathogenesis of mixed‐lineage leukemia. Annu Rev Pathol 7: 283 – 301.en_US
dc.identifier.citedreferenceKrivtsov AV, Armstrong SA. 2007. MLL translocations, histone modifications and leukaemia stem‐cell development. Nat Rev Cancer 7: 823 – 33.en_US
dc.identifier.citedreferenceSmith E, Lin C, Shilatifard A. 2011. The super elongation complex (SEC) and MLL in development and disease. Genes Dev 25: 661 – 72.en_US
dc.identifier.citedreferenceNguyen AT, Zhang Y. 2011. The diverse functions of Dot1 and H3K79 methylation. Genes Dev 25: 1345 – 58.en_US
dc.identifier.citedreferenceMarschalek R. 2010. Mixed lineage leukemia: roles in human malignancies and potential therapy. FEBS J 277: 1822 – 31.en_US
dc.identifier.citedreferenceWei J, Wunderlich M, Fox C, Alvarez S, et al. 2008. Microenvironment determines lineage fate in a human model of MLL‐AF9 leukemia. Cancer Cell 13: 483 – 95.en_US
dc.identifier.citedreferenceLavau C, Szilvassy SJ, Slany R, Cleary ML. 1997. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX‐ENL. EMBO J 16: 4226 – 37.en_US
dc.identifier.citedreferenceSo CW, Karsunky H, Wong P, Weissman IL, et al. 2004. Leukemic transformation of hematopoietic progenitors by MLL‐GAS7 in the absence of Hoxa7 or Hoxa9. Blood 103: 3192 – 9.en_US
dc.identifier.citedreferenceBitoun E, Oliver PL, Davies KE. 2007. The mixed‐lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 16: 92 – 106.en_US
dc.identifier.citedreferenceMohan M, Herz HM, Takahashi YH, Lin C, et al. 2010. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1‐containing complex (DotCom). Genes Dev 24: 574 – 89.en_US
dc.identifier.citedreferenceSteger DJ, Lefterova MI, Ying L, Stonestrom AJ, et al. 2008. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 28: 2825 – 39.en_US
dc.identifier.citedreferenceOkada Y, Feng Q, Lin Y, Jiang Q, et al. 2005. hDOT1L links histone methylation to leukemogenesis. Cell 121: 167 – 78.en_US
dc.identifier.citedreferenceDiMartino JF, Ayton PM, Chen EH, Naftzger CC, et al. 2002. The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL‐AF10. Blood 99: 3780 – 5.en_US
dc.identifier.citedreferenceNguyen AT, Taranova O, He J, Zhang Y. 2011. DOT1L, the H3K79 methyltransferase, is required for MLL‐AF9‐mediated leukemogenesis. Blood 117: 6912 – 22.en_US
dc.identifier.citedreferenceChang MJ, Wu H, Achille NJ, Reisenauer MR, et al. 2010. Histone H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL oncogenes. Cancer Res 70: 10234 – 42.en_US
dc.identifier.citedreferenceJo SY, Granowicz EM, Maillard I, Thomas D, et al. 2011. Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 117: 4759 – 68.en_US
dc.identifier.citedreferenceBernt KM, Zhu N, Sinha AU, Vempati S, et al. 2011. MLL‐rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20: 66 – 78.en_US
dc.identifier.citedreferenceDaigle SR, Olhava EJ, Therkelsen CA, Majer CR, et al. 2011. Selective killing of mixed lineage leukemia cells by a potent small‐molecule DOT1L inhibitor. Cancer Cell 20: 53 – 65.en_US
dc.identifier.citedreferenceYokoyama A, Lin M, Naresh A, Kitabayashi I, et al. 2010. A higher‐order complex containing AF4 and ENL family proteins with P‐TEFb facilitates oncogenic and physiologic MLL‐dependent transcription. Cancer Cell 17: 198 – 212.en_US
dc.identifier.citedreferenceKrivtsov AV, Feng Z, Lemieux ME, Faber J, et al. 2008. H3K79 methylation profiles define murine and human MLL‐AF4 leukemias. Cancer Cell 14: 355 – 68.en_US
dc.identifier.citedreferenceLiao SM, Zhang J, Jeffery DA, Koleske AJ, et al. 1995. A kinase‐cyclin pair in the RNA polymerase II holoenzyme. Nature 374: 193 – 6.en_US
dc.identifier.citedreferenceDahmus ME. 1996. Reversible phosphorylation of the C‐terminal domain of RNA polymerase II. J Biol Chem 271: 19009 – 12.en_US
dc.identifier.citedreferenceMuse GW, Gilchrist DA, Nechaev S, Shah R, et al. 2007. RNA polymerase is poised for activation across the genome. Nat Genet 39: 1507 – 11.en_US
dc.identifier.citedreferencePeterlin BM, Price DH. 2006. Controlling the elongation phase of transcription with P‐TEFb. Mol Cell 23: 297 – 305.en_US
dc.identifier.citedreferenceMueller D, Garcia‐Cuellar MP, Bach C, Buhl S, et al. 2009. Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol 7: e1000249.en_US
dc.identifier.citedreferenceWang QF, Wu G, Mi S, He F, et al. 2011. MLL fusion proteins preferentially regulate a subset of wild‐type MLL target genes in the leukemic genome. Blood 117: 6895 – 905.en_US
dc.identifier.citedreferenceChang PY, Hom RA, Musselman CA, Zhu L, et al. 2010. Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL‐dependent gene transcription. J Mol Biol 400: 137 – 44.en_US
dc.identifier.citedreferenceWang Z, Song J, Milne TA, Wang GG, et al. 2010. Pro isomerization in MLL1 PHD3‐bromo cassette connects H3K4me readout to CyP33 and HDAC‐mediated repression. Cell 141: 1183 – 94.en_US
dc.identifier.citedreferenceChen J, Santillan DA, Koonce M, Wei W, et al. 2008. Loss of MLL PHD finger 3 is necessary for MLL‐ENL‐induced hematopoietic stem cell immortalization. Cancer Res 68: 6199 – 207.en_US
dc.identifier.citedreferenceWysocka J, Swigut T, Xiao H, Milne TA, et al. 2006. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442: 86 – 90.en_US
dc.identifier.citedreferenceRuthenburg AJ, Li H, Milne TA, Dewell S, et al. 2011. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145: 692 – 706.en_US
dc.identifier.citedreferenceLi H, Ilin S, Wang W, Duncan EM, et al. 2006. Molecular basis for site‐specific read‐out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442: 91 – 5.en_US
dc.identifier.citedreferenceSims RJ III, Millhouse S, Chen CF, Lewis BA, et al. 2007. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre‐mRNA splicing. Mol Cell 28: 665 – 76.en_US
dc.identifier.citedreferenceErnst P, Wang J, Huang M, Goodman RH, et al. 2001. MLL and CREB bind cooperatively to the nuclear coactivator CREB‐binding protein. Mol Cell Biol 21: 2249 – 58.en_US
dc.identifier.citedreferenceDou Y, Milne TA, Tackett AJ, Smith ER, et al. 2005. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121: 873 – 85.en_US
dc.identifier.citedreferenceWang J, Iwasaki H, Krivtsov A, Febbo PG, et al. 2005. Conditional MLL‐CBP targets GMP and models therapy‐related myeloproliferative disease. EMBO J 24: 368 – 81.en_US
dc.identifier.citedreferenceDey A, Chitsaz F, Abbasi A, Misteli T, et al. 2003. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci USA 100: 8758 – 63.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.