Show simple item record

Combining different design strategies for rational affinity maturation of the MICA‐NKG2D interface

dc.contributor.authorHenager, Samuel H.en_US
dc.contributor.authorHale, Melissa A.en_US
dc.contributor.authorMaurice, Nicholas J.en_US
dc.contributor.authorDunnington, Erin C.en_US
dc.contributor.authorSwanson, Carter J.en_US
dc.contributor.authorPeterson, Megan J.en_US
dc.contributor.authorBan, Joseph J.en_US
dc.contributor.authorCulpepper, David J.en_US
dc.contributor.authorDavies, Luke D.en_US
dc.contributor.authorSanders, Lisa K.en_US
dc.contributor.authorMcFarland, Benjamin J.en_US
dc.date.accessioned2012-09-05T14:46:14Z
dc.date.available2013-10-18T17:47:30Zen_US
dc.date.issued2012-09en_US
dc.identifier.citationHenager, Samuel H.; Hale, Melissa A.; Maurice, Nicholas J.; Dunnington, Erin C.; Swanson, Carter J.; Peterson, Megan J.; Ban, Joseph J.; Culpepper, David J.; Davies, Luke D.; Sanders, Lisa K.; McFarland, Benjamin J. (2012). "Combining different design strategies for rational affinity maturation of the MICA‐NKG2D interface ." Protein Science 21(9): 1396-1402. <http://hdl.handle.net/2027.42/93571>en_US
dc.identifier.issn0961-8368en_US
dc.identifier.issn1469-896Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93571
dc.description.abstractWe redesigned residues on the surface of MICA, a protein that binds the homodimeric immunoreceptor NKG2D, to increase binding affinity with a series of rational, incremental changes. A fixed‐backbone RosettaDesign protocol scored a set of initial mutations, which we tested by surface plasmon resonance for thermodynamics and kinetics of NKG2D binding, both singly and in combination. We combined the best four mutations at the surface with three affinity‐enhancing mutations below the binding interface found with a previous design strategy. After curating design scores with three cross‐validated tests, we found a linear relationship between free energy of binding and design score, and to a lesser extent, enthalpy and design score. Multiple mutants bound with substantial subadditivity, but in at least one case full additivity was observed when combining distant mutations. Altogether, combining the best mutations from the two strategies into a septuple mutant enhanced affinity by 50‐fold, to 50 nM, demonstrating a simple, effective protocol for affinity enhancement.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherVan'T Hoff Enthalpyen_US
dc.subject.otherFree Energy of Bindingen_US
dc.subject.otherImmunoreceptorsen_US
dc.subject.otherAdditivityen_US
dc.subject.otherThermodynamics and Kinetics of Bindingen_US
dc.subject.otherProtein Designen_US
dc.subject.otherProtein–Protein Interactionen_US
dc.titleCombining different design strategies for rational affinity maturation of the MICA‐NKG2D interfaceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCarter J. Swanson's current address is the Department of Biophysics, University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationotherDepartment of Chemistry and Biochemistry, Seattle Pacific University, Seattle, Washington 98119‐1997en_US
dc.contributor.affiliationotherMegan J. Peterson's current address is the Institute of Molecular Biology, University of Oregon, Eugene, OR 97403en_US
dc.contributor.affiliationotherLisa K. Sanders's current address is the School of Medicine, University of Washington, Seattle, WA 98195en_US
dc.contributor.affiliationotherSeattle Pacific University, Suite 205, 3307 Third Avenue West, Seattle, WA 98119‐1997en_US
dc.identifier.pmid22761154en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93571/1/PRO_2115_sm_Suppinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93571/2/2115_ftp.pdf
dc.identifier.doi10.1002/pro.2115en_US
dc.identifier.sourceProtein Scienceen_US
dc.identifier.citedreferencePoulsen TR, Jensen A, Haurum JS, Andersen PS ( 2011 ) Limits for antibody affinity maturation and repertoire diversification in hypervaccinated humans. J Immunol 187: 4229 – 4235.en_US
dc.identifier.citedreferenceMuller BH, Savatier A, L'Hostis G, Costa N, Bossus M, Michel S, Ott C, Becquart L, Ruffion A, Stura EA, Ducancel F ( 2011 ) In vitro affinity maturation of an anti‐PSA antibody for prostate cancer diagnostic assay. J Mol Biol 414: 545 – 562.en_US
dc.identifier.citedreferenceDantas G, Corrent C, Reichow SL, Havranek JJ, Eletr ZM, Isern NG, Kuhlman B, Varani G, Merritt EA, Baker D ( 2007 ) High‐resolution structural and thermodynamic analysis of extreme stabilization of human procarboxypeptidase by computational protein design. J Mol Biol 366: 1209 – 1221.en_US
dc.identifier.citedreferenceKaufmann KW, Lemmon GH, DeLuca SL, Sheehan JH, Meiler J ( 2010 ) Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 49: 2987 – 2998.en_US
dc.identifier.citedreferencePantazes RJ, Grisewood MJ, Maranas CD ( 2011 ) Recent advances in computational protein design. Curr Opin Struct Biol 21: 467 – 472.en_US
dc.identifier.citedreferenceKaranicolas J, Kuhlman B ( 2009 ) Computational design of affinity and specificity at protein–protein interfaces. Curr Opin Struct Biol 19: 458 – 463.en_US
dc.identifier.citedreferenceMandell DJ, Kortemme T ( 2009 ) Computer‐aided design of functional protein interactions. Nat Chem Biol 5: 797 – 807.en_US
dc.identifier.citedreferencePierce BG, Haidar JN, Yu Y, Weng Z ( 2010 ) Combinations of affinity‐enhancing mutations in a T cell receptor reveal highly nonadditive effects within and between complementarity determining regions and chains. Biochemistry 49: 7050 – 7059.en_US
dc.identifier.citedreferenceReichmann D, Cohen M, Abramovich R, Dym O, Lim D, Strynadka NC, Schreiber G ( 2007 ) Binding hot spots in the TEM1‐BLIP interface in light of its modular architecture. J Mol Biol 365: 663 – 679.en_US
dc.identifier.citedreferenceReichmann D, Rahat O, Albeck S, Meged R, Dym O, Schreiber G ( 2005 ) The modular architecture of protein–protein binding interfaces. Proc Natl Acad Sci U S A 102: 57 – 62.en_US
dc.identifier.citedreferenceWu Y, Gao F, Liu J, Qi J, Gostick E, Price DA, Gao GF ( 2011 ) Structural basis of diverse peptide accommodation by the Rhesus Macaque MHC class I molecule Mamu‐B*17: insights into immune protection from Simian Immunodeficiency Virus. J Immunol 187: 6382 – 6392.en_US
dc.identifier.citedreferenceInsaidoo FK, Borbulevych OY, Hossain M, Santhanagopolan SM, Baxter TK, Baker BM ( 2011 ) Loss of T cell antigen recognition arising from changes in peptide and major histocompatibility complex protein flexibility. J Biol Chem 286: 40163 – 40173.en_US
dc.identifier.citedreferenceBonsor DA, Postel S, Pierce BG, Wang N, Zhu P, Buonpane RA, Weng Z, Kranz DM, Sundberg EJ ( 2011 ) Molecular basis of a million‐fold affinity maturation process in a protein–protein interaction. J Mol Biol 411: 321 – 328.en_US
dc.identifier.citedreferenceKeeble AH, Joachimiak LA, Maté MJ, Meenan N, Kirkpatrick N, Baker D, Kleanthous C ( 2008 ) Experimental and computational analyses of the energetic basis for dual recognition of immunity proteins by colicin endonucleases. J Mol Biol 379: 745 – 759.en_US
dc.identifier.citedreferenceSammond DW, Eletr ZM, Purbeck C, Kimple RJ, Siderovski DP, Kuhlman B ( 2007 ) Structure‐based protocol for identifying mutations that enhance protein–protein binding affinities. J Mol Biol 371: 1392 – 1404.en_US
dc.identifier.citedreferenceHaidar JN, Pierce B, Yu Y, Tong W, Li M, Weng Z ( 2009 ) Structure‐based design of a T‐cell receptor leads to nearly 100‐fold improvement in binding affinity for pepMHC. Proteins 74: 948 – 960.en_US
dc.identifier.citedreferenceLippow SM, Wittrup KD, Tidor B ( 2007 ) Computational design of antibody‐affinity improvement beyond in vivo maturation. Nat Biotechnol 25: 1171 – 1176.en_US
dc.identifier.citedreferenceMayer C, Snyder WK, Swietlicka M, VanSchoiack A, Austin C, McFarland B ( 2009 ) Size‐exclusion chromatography can identify faster‐associating protein complexes and evaluate design strategies. BMC Res Notes 2: 135.en_US
dc.identifier.citedreferenceLi P, Morris DL, Willcox BE, Steinle A, Spies T, Strong RK ( 2001 ) Complex structure of the activating immunoreceptor NKG2D and its MHC class I‐like ligand MICA. Nat Immunol 2: 443 – 451.en_US
dc.identifier.citedreferenceKortemme T, Morozov AV, Baker D ( 2003 ) An orientation‐dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein–protein complexes. J Mol Biol 326: 1239 – 1259.en_US
dc.identifier.citedreferenceObeidy P, Sharland AF ( 2009 ) NKG2D and its ligands. Int J Biochem Cell Biol 41: 2364 – 2367.en_US
dc.identifier.citedreferenceLengyel CSE, Willis LJ, Mann P, Baker D, Kortemme T, Strong RK, McFarland BJ ( 2007 ) Mutations designed to destabilize the receptor‐bound conformation increase MICA‐NKG2D association rate and affinity. J Biol Chem 282: 30658 – 30666.en_US
dc.identifier.citedreferenceAzoitei ML, Correia BE, Ban Y‐EA, Carrico C, Kalyuzhniy O, Chen L, Schroeter A, Huang P‐S, McLellan JS, Kwong PD, Baker D, Strong RK, Schief WR ( 2011 ) Computation‐guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 334: 373 – 376.en_US
dc.identifier.citedreferenceFleishman SJ, Whitehead TA, Strauch E‐M, Corn JE, Qin S, Zhou H‐X, Mitchell JC, Demerdash ONA, Takeda‐Shitaka M, Terashi G, Moal IH, Li X, Bates PA, Zacharias M, Park H, Ko J‐S, Lee H, Seok C, Bourquard T, Bernauer J, Poupon A, Azé J, Soner S, Ovali ŞK, Ozbek P, Tal NB, Haliloglu T, Hwang H, Vreven T, Pierce BG, Weng Z, Pérez‐Cano L, Pons C, Fernández‐Recio J, Jiang F, Yang F, Gong X, Cao L, Xu X, Liu B, Wang P, Li C, Wang C, Robert CH, Guharoy M, Liu S, Huang Y, Li L, Guo D, Chen Y, Xiao Y, London N, Itzhaki Z, Schueler‐Furman O, Inbar Y, Potapov V, Cohen M, Schreiber G, Tsuchiya Y, Kanamori E, Standley DM, Nakamura H, Kinoshita K, Driggers CM, Hall RG, Morgan JL, Hsu VL, Zhan J, Yang Y, Zhou Y, Kastritis PL, Bonvin AMJJ, Zhang W, Camacho CJ, Kilambi KP, Sircar A, Gray JJ, Ohue M, Uchikoga N, Matsuzaki Y, Ishida T, Akiyama Y, Khashan R, Bush S, Fouches D, Tropsha A, Esquivel‐Rodríguez J, Kihara D, Stranges PB, Jacak R, Kuhlman B, Huang S‐Y, Zou X, Wodak SJ, Janin J, Baker D ( 2011 ) Community‐wide assessment of protein‐interface modeling suggests improvements to design methodology. J Mol Biol 414: 289 – 302.en_US
dc.identifier.citedreferenceAnunciado D, Dhar A, Gruebele M, Baranger AM ( 2011 ) Multistep kinetics of the U1A–SL2 RNA complex dissociation. J Mol Biol 408: 896 – 908.en_US
dc.identifier.citedreferencePeterson MJ, Snyder WK, Westerman S, McFarland BJ ( 2011 ) Preparative protein production from inclusion bodies and crystallization: a seven‐week biochemistry sequence. J Chem Educ 88: 986 – 989.en_US
dc.identifier.citedreferenceRohl CA, Strauss CEM, Misura KMS, Baker D ( 2004 ) Protein structure prediction using Rosetta. In: Ludwig B, Michael LJ, Eds. Methods in enzymology. Academic Press (San Diego, CA), 383: 66 – 93.en_US
dc.identifier.citedreferenceStanfield RL, Julien J‐P, Pejchal R, Gach JS, Zwick MB, Wilson IA ( 2011 ) Structure‐based design of a protein immunogen that displays an HIV‐1 gp41 neutralizing epitope. J Mol Biol 414: 460 – 476.en_US
dc.identifier.citedreferenceDyson MR, Zheng Y, Zhang C, Colwill K, Pershad K, Kay BK, Pawson T, McCafferty J ( 2011 ) Mapping protein interactions by combining antibody affinity maturation and mass spectrometry. Anal Biochem 417: 25 – 35.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.