Show simple item record

Elemental and isotopic carbon and nitrogen records of organic matter accumulation in a Holocene permafrost peat sequence in the East European Russian Arctic

dc.contributor.authorAndersson, Rina Argeliaen_US
dc.contributor.authorMeyers, Philipen_US
dc.contributor.authorHornibrook, Edwarden_US
dc.contributor.authorKuhry, Peteren_US
dc.contributor.authorMörth, Carl‐magnusen_US
dc.date.accessioned2012-09-05T14:46:15Z
dc.date.available2013-10-01T17:06:32Zen_US
dc.date.issued2012-08en_US
dc.identifier.citationAndersson, Rina Argelia; Meyers, Philip; Hornibrook, Edward; Kuhry, Peter; Mörth, Carl‐magnus (2012). "Elemental and isotopic carbon and nitrogen records of organic matter accumulation in a Holocene permafrost peat sequence in the East European Russian Arctic." Journal of Quaternary Science 27(6): 545-552. <http://hdl.handle.net/2027.42/93575>en_US
dc.identifier.issn0267-8179en_US
dc.identifier.issn1099-1417en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93575
dc.description.abstractA peat deposit from the East European Russian Arctic, spanning nearly 10 000 years, was investigated to study soil organic matter degradation using analyses of bulk elemental and stable isotopic compositions and plant macrofossil remains. The peat accumulated initially in a wet fen that was transformed into a peat plateau bog following aggradation of permafrost in the late Holocene (∼2500 cal a BP). Total organic carbon and total nitrogen (N) concentrations are higher in the fen peat than in the moss‐dominated bog peat layers. Layers in the sequence that have lower concentrations of total hydrogen (H) are associated with degraded vascular plant residues. C/N and H/C atomic ratios indicate better preservation of organic matter in peat material dominated by bryophytes as opposed to vascular plants. The presence of permafrost in the peat plateau stage and water‐saturated conditions at the bottom of the fen stage appear to lead to better preservation of organic plant material. δ 15 N values suggest N isotopic fractionation was driven primarily by microbial decomposition whereas differences in δ 13 C values appear to reflect mainly changes in plant assemblages. Positive shifts in both δ 15 N and δ 13 C values coincide with a local change to drier conditions as a result of the onset of permafrost and frost heave of the peat surface. This pattern suggests that permafrost aggradation not only resulted in changes in vegetation but also aerated the underlying fen peat, which enhanced microbial denitrification, causing the observed 15 N‐enrichment. Copyright © 2012 John Wiley & Sons, Ltd.en_US
dc.publisherJohn Wiley & Sons, Ltd.en_US
dc.subject.otherMacrofossil Analysesen_US
dc.subject.otherElemental Analysesen_US
dc.subject.otherStable Isotopesen_US
dc.subject.otherPermafrosten_US
dc.subject.otherArctic Peatlandsen_US
dc.titleElemental and isotopic carbon and nitrogen records of organic matter accumulation in a Holocene permafrost peat sequence in the East European Russian Arcticen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Earth and Environmental Sciences, The University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Geological Sciences, and Quaternary Geology, Stockholm University, SE‐106 91 Stockholm Sweden.en_US
dc.contributor.affiliationotherDepartment of Physical Geography and Quaternary Geology, Stockholm University, SE‐106 91 Stockholm Swedenen_US
dc.contributor.affiliationotherBristol Biogeochemistry Research Centre & Cabot Institute, School of Earth Sciences, University of Bristol, UKen_US
dc.contributor.affiliationotherDepartment of Geological Sciences, and Quaternary Geology, Stockholm University, SE‐106 91 Stockholm Swedenen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93575/1/2541_ftp.pdf
dc.identifier.doi10.1002/jqs.2541en_US
dc.identifier.sourceJournal of Quaternary Scienceen_US
dc.identifier.citedreferenceRegina K, Silvola J, Martikainen PJ. 1999. Short‐term effects of changing water table on N 2 O fluxes from peat monoliths from natural and drained boreal peatlands. Global Change Biology 5: 183 – 189.en_US
dc.identifier.citedreferenceKuhry P, Vitt DH. 1996. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77: 271 – 275.en_US
dc.identifier.citedreferenceLemke P, Ren J, Alley RB, et al. 2007. Observations: changes in snow, ice and frozen ground. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon S, Qin D, Manning M, et al. (eds). Cambridge University Press: Cambridge; 337 – 383.en_US
dc.identifier.citedreferenceLimpens J, Hejmans M, Berendse F. 2006. The nitrogen cycle in boreal peatlands. In Boreal Peatland Ecosystems, Wieder RK, Vitt DH. (eds). Springer‐Verlag Berlin and Heidelberg GmbH & Co. K: Berlin; 195 – 230.en_US
dc.identifier.citedreferenceMénot G, Burns SJ. 2001. Carbon isotopes in ombrogenic peat bog plants as climatic indicators: calibration from an altitudinal transect in Switzerland. Organic Geochemistry 32: 233 – 245.en_US
dc.identifier.citedreferenceMeyers PA. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114: 289 – 302.en_US
dc.identifier.citedreferenceMoschen R, Kühl N, Rehberger I, et al. 2009. Stable carbon and oxygen isotopes in sub‐fossil Sphagnum: Assessment of their applicability for palaeoclimatology. Chemical Geology 259: 262 – 272.en_US
dc.identifier.citedreferenceNadelhoffer K, Shaver G, Fry B, et al. 1996. 15N natural abundances and N use by tundra plants. Oecologia 107: 386 – 394.en_US
dc.identifier.citedreferenceNichols JE, Walcott M, Bradley R, et al. 2009. Quantitative assessment of precipitation seasonality and summer surface wetness using ombrotrophic sediments from an Arctic Norwegian peatland. Quaternary Research 72: 443 – 451.en_US
dc.identifier.citedreferenceOksanen PO, Kuhry P, Alekseeva RN. 2001. Holocene development of the Rogovaya River peat plateau, European Russian Arctic. The Holocene 11: 25 – 40.en_US
dc.identifier.citedreferenceOrtiz JE, Torres T, Delgado A, et al. 2004. The palaeoenvironmental and palaeohydrological evolution of Padul Peat Bog (Granada, Spain) over one million years, from elemental, isotopic and molecular organic geochemical proxies. Organic Geochemistry 35: 1243 – 1260.en_US
dc.identifier.citedreferenceRaghoebarsing AA, Smolders AJP, Schmid MC, et al. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436: 1153 – 1156.en_US
dc.identifier.citedreferenceRosswall T, Granhall U. 1980. Nitrogen cycling in a subarctic ombrotrophic mire. Ecological Bulletins 209 – 234.en_US
dc.identifier.citedreferenceSannel ABK, Kuhry P. 2009. Holocene peat growth and decay dynamics in sub‐arctic peat plateaus, west‐central Canada. Boreas 38: 13 – 24.en_US
dc.identifier.citedreferenceSegers R. 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41: 23 – 51.en_US
dc.identifier.citedreferenceSevilla M, Fuertes AB. 2009. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47: 2281 – 2289.en_US
dc.identifier.citedreferenceSiegel SM. 1969. Evidence for the Presence of Lignin in Moss Gametophytes. American Journal of Botany 56: 175 – 179.en_US
dc.identifier.citedreferenceSkrzypek G, Kaluzny A, Wojtun B, et al. 2007. The carbon stable isotopic composition of mosses: A record of temperature variation. Organic Geochemistry 38: 1770 – 1781.en_US
dc.identifier.citedreferenceSkrzypek G, Jezierski P, Szynkiewicz A. 2010. Preservation of primary stable isotope signatures of peat‐forming plants during early decomposition – observation along an altitudinal transect. Chemical Geology 273: 238 – 249.en_US
dc.identifier.citedreferenceTalbot MR, Livingstone DA. 1989. Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicators. Palaeogeography, Palaeoclimatology, Palaeoecology 70: 121 – 137.en_US
dc.identifier.citedreferenceTarnocai C, Canadell J, Schuur E, et al. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23: GB2023. DOI: 2010.1029/2008GB003327.en_US
dc.identifier.citedreferenceTuretsky MR. 2003. New frontiers in bryology and lichenology: the role of bryophytes in carbon and nitrogen cycling. Bryologist 106: 395 – 409.en_US
dc.identifier.citedreferenceVardy SR, Warner BG, Turunen J, et al. 2000. Carbon accumulation in permafrost peatlands in the Northwest Territories and Nunavut, Canada. The Holocene 10: 273 – 280.en_US
dc.identifier.citedreferenceVerhoeven JTA, Liefveld WM. 1997. The ecological significance of organochemical compounds in Sphagnum. Acta Botanica Neerlandica 46: 117 – 130.en_US
dc.identifier.citedreferenceVirtanen T, Mikkola K, Nikula A. 2004. Satellite image based vegetation classification of a large area using limited ground reference data: a case study in the Usa Basin, north‐east European Russia. Polar Research 23: 51 – 66.en_US
dc.identifier.citedreferenceVitt D, Wieder R, Halsey L, et al. 2003. Response of Sphagnum fuscum to nitrogen deposition: a case study of ombrogenous peatlands in Alberta, Canada. The Bryologist 106: 235 – 245.en_US
dc.identifier.citedreferenceWerth M, Kuzyakov Y. 2010. 13C fractionation at the root‐microorganisms‐soil interface: a review and outlook for partitioning studies. Soil Biology and Biochemistry 42: 1372 – 1384.en_US
dc.identifier.citedreferenceWieder R, Vitt D, Burke‐Scoll M, et al. 2010. Nitrogen and sulphur deposition and the growth of Sphagnum fuscum in bogs of the Athabasca Oils Sands Region, Alberta. Journal of Limnology 69: 161 – 170.en_US
dc.identifier.citedreferenceWoodin SJ, Lee JA. 1987. The fate of some components of acidic deposition in ombrotrophic mires. Environmental Pollution 45: 61 – 72.en_US
dc.identifier.citedreferenceAlewell C, Giesler R, Klaminder J, et al. 2011. Stable carbon isotopes as indicators for micro‐geomorphic changes in palsa peats. Biogeosciences Discussions 8: 527 – 548.en_US
dc.identifier.citedreferenceAndersson RA, Kuhry P, Meyers P, et al. 2011. Impacts of paleohydrological changes on n‐alkane biomarker compositions of a Holocene peat sequence in the Eastern European Russian Arctic. Organic Geochemistry 42: 1065 – 1075.en_US
dc.identifier.citedreferenceBalesdent J, Mariotti A, Guillet B. 1987. Natural 13 C abundance as a tracer for studies of soil organic matter dynamics. Soil Biology and Biochemistry 19: 25 – 30.en_US
dc.identifier.citedreferenceLoader NJ, McCarroll D, van der Knaap WO, et al. 2007. Characterizing carbon isotopic variability in Sphagnum. The Holocene 17: 403 – 410.en_US
dc.identifier.citedreferenceBalesdent J, Mariotti A. 1998. Measurement of SOM turnover using 13 C natural abundance. In Mass Spectrometry of Soils, Boutton TW, Yamasaki S. (eds). Marcel Dekker: New York; 83 – 111.en_US
dc.identifier.citedreferenceBambalov N. 2011. Changes in the elemental composition of lignin during humification. Eurasian Soil Science 44: 1090 – 1096.en_US
dc.identifier.citedreferenceBarber KE. 1993. Peatlands as scientific archives of past biodiversity. Biodiversity and Conservation 2: 474 – 489.en_US
dc.identifier.citedreferenceBenner R, Fogel M, Sprague EK, et al. 1987. Depletion of 13C in lignin and its implication for stable isotope studies. Nature 329: 708 – 710.en_US
dc.identifier.citedreferenceBodelier PLE, Libochant JA, Blom C, et al. 1996. Dynamics of nitrification and denitrification in root‐oxygenated sediments and adaptation of ammonia‐oxidizing bacteria to low‐oxygen or anoxic habitats. Applied Environmental Microbiology 62: 4100 – 4107.en_US
dc.identifier.citedreferenceBol RA, Harkness DD, Huang Y, et al. 1999. The influence of soil processes on carbon isotope distribution and turnover in the British uplands. European Journal of Soil Science 50: 41 – 51.en_US
dc.identifier.citedreferenceCaseldine CJ, Baker A, Charman DJ, et al. 2000. A comparative study of optical properties of NaOH peat extracts: implications for humification studies. The Holocene 10: 649 – 658.en_US
dc.identifier.citedreferenceChambers FM, Booth RK, De Vleeschouwer F, et al. 2012. Development and refinement of proxy‐climate indicators from peats. Quaternary International. In press. [doi: 10.1016/j.quaint.2011.04.039].en_US
dc.identifier.citedreferenceClymo RS, Bryant CL. 2008. Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7‐m deep raised peat bog. Geochimica et Cosmochimica Acta 72: 2048 – 2066.en_US
dc.identifier.citedreferenceColeman M, Bledsoe C, Lopushinsky W. 1989. Pure culture response of ectomycorrhizal fungi to imposed water stress. Canadian Journal of Botany 67: 29 – 39.en_US
dc.identifier.citedreferenceDavidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165 – 173.en_US
dc.identifier.citedreferenceEdelmann HG, Neinhuis C, Jarvis M, et al. 1998. Ultrastructure and chemistry of the cell wall of the moss Rhacocarpus purpurascens (Rhacocarpaceae): a puzzling architecture among plants. Planta 206: 315 – 321.en_US
dc.identifier.citedreferenceErickson M, Miksche GE. 1974. On the occurrence of lignin or polyphenols in some mosses and liverworts. Phytochemistry 13: 2295 – 2299.en_US
dc.identifier.citedreferenceFarquhar GD, Ehleringer JR, Hubick KT. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503 – 537.en_US
dc.identifier.citedreferenceFrancioso O, Montecchio D, Gioacchini P, et al. 2005. Thermal analysis (TG‐DTA) and isotopic characterization (13C–15N) of humic acids from different origins. Applied Geochemistry 20: 537 – 544.en_US
dc.identifier.citedreferenceHanson R, Hanson T. 1996. Methanotrophic bacteria. Microbiological Reviews 60: 439 – 471.en_US
dc.identifier.citedreferenceHayes JM. 1993. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Marine Geology 113: 111 – 125.en_US
dc.identifier.citedreferenceHornibrook ERC, Longstaffe FJ, Fyfe WS, et al. 2000. Carbon isotope ratios and carbon, nitrogen and sulfur abundances in flora and soil organic matter from a temperate‐zone bog and marsh. Geochemical Journal 34: 237 – 245.en_US
dc.identifier.citedreferenceHornibrook ERC. 2009. The stable carbon isotope composition of methane produced and emitted from northern peatlands. In Northern Peatlands and Carbon Cycling, Baird A, Belyea L, Comas X, et al. (eds). American Geophysical Union: Washington, DC; 187 – 203.en_US
dc.identifier.citedreferenceHu B‐l, Rush D, van der Biezen E, et al. 2011. New anaerobic, ammonium‐oxidizing community enriched from peat soil. Applied Environmental Microbiology 77: 966 – 971.en_US
dc.identifier.citedreferenceHumbert S, Tarnawski S, Fromin N, et al. 2009. Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J 4: 450 – 454.en_US
dc.identifier.citedreferenceJones MC, Peteet DM, Sambrotto R. 2010. Late‐glacial and Holocene δ15N and δ13C variation from a Kenai Peninsula, Alaska peatland. Palaeogeography, Palaeoclimatology, Palaeoecology 293: 132 – 143.en_US
dc.identifier.citedreferenceKaislahti Tillman P, Holzkämper S, Kuhry P, et al. 2010. Stable carbon and oxygen isotopes in Sphagnum fuscum peat from subarctic Canada: implications for palaeoclimate studies. Chemical Geology 270: 216 – 226.en_US
dc.identifier.citedreferenceKarunen P, Ekman R. 1982. Age‐dependent content of polymerized lipids in Sphagnum fuscum. Physiologia Plantarum 54: 162 – 166.en_US
dc.identifier.citedreferenceKracht O, Gleixner G. 2000. Isotope analysis of pyrolysis products from Sphagnum peat and dissolved organic matter from bog water. Organic Geochemistry 31: 645 – 654.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.