Next generation analytic tools for large scale genetic epidemiology studies of complex diseases
dc.contributor.author | Mechanic, Leah E. | en_US |
dc.contributor.author | Chen, Huann‐sheng | en_US |
dc.contributor.author | Amos, Christopher I. | en_US |
dc.contributor.author | Chatterjee, Nilanjan | en_US |
dc.contributor.author | Cox, Nancy J. | en_US |
dc.contributor.author | Divi, Rao L. | en_US |
dc.contributor.author | Fan, Ruzong | en_US |
dc.contributor.author | Harris, Emily L. | en_US |
dc.contributor.author | Jacobs, Kevin | en_US |
dc.contributor.author | Kraft, Peter | en_US |
dc.contributor.author | Leal, Suzanne M. | en_US |
dc.contributor.author | McAllister, Kimberly | en_US |
dc.contributor.author | Moore, Jason H. | en_US |
dc.contributor.author | Paltoo, Dina N. | en_US |
dc.contributor.author | Province, Michael A. | en_US |
dc.contributor.author | Ramos, Erin M. | en_US |
dc.contributor.author | Ritchie, Marylyn D. | en_US |
dc.contributor.author | Roeder, Kathryn | en_US |
dc.contributor.author | Schaid, Daniel J. | en_US |
dc.contributor.author | Stephens, Matthew | en_US |
dc.contributor.author | Thomas, Duncan C. | en_US |
dc.contributor.author | Weinberg, Clarice R. | en_US |
dc.contributor.author | Witte, John S. | en_US |
dc.contributor.author | Zhang, Shunpu | en_US |
dc.contributor.author | Zöllner, Sebastian | en_US |
dc.contributor.author | Feuer, Eric J. | en_US |
dc.contributor.author | Gillanders, Elizabeth M. | en_US |
dc.date.accessioned | 2012-09-05T14:46:16Z | |
dc.date.available | 2013-03-04T15:29:56Z | en_US |
dc.date.issued | 2012-01 | en_US |
dc.identifier.citation | Mechanic, Leah E.; Chen, Huann‐sheng ; Amos, Christopher I.; Chatterjee, Nilanjan; Cox, Nancy J.; Divi, Rao L.; Fan, Ruzong; Harris, Emily L.; Jacobs, Kevin; Kraft, Peter; Leal, Suzanne M.; McAllister, Kimberly; Moore, Jason H.; Paltoo, Dina N.; Province, Michael A.; Ramos, Erin M.; Ritchie, Marylyn D.; Roeder, Kathryn; Schaid, Daniel J.; Stephens, Matthew; Thomas, Duncan C.; Weinberg, Clarice R.; Witte, John S.; Zhang, Shunpu; Zöllner, Sebastian ; Feuer, Eric J.; Gillanders, Elizabeth M. (2012). "Next generation analytic tools for large scale genetic epidemiology studies of complex diseases." Genetic Epidemiology 36(1): 22-35. <http://hdl.handle.net/2027.42/93578> | en_US |
dc.identifier.issn | 0741-0395 | en_US |
dc.identifier.issn | 1098-2272 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/93578 | |
dc.description.abstract | Over the past several years, genome‐wide association studies (GWAS) have succeeded in identifying hundreds of genetic markers associated with common diseases. However, most of these markers confer relatively small increments of risk and explain only a small proportion of familial clustering. To identify obstacles to future progress in genetic epidemiology research and provide recommendations to NIH for overcoming these barriers, the National Cancer Institute sponsored a workshop entitled “Next Generation Analytic Tools for Large‐Scale Genetic Epidemiology Studies of Complex Diseases” on September 15–16, 2010. The goal of the workshop was to facilitate discussions on (1) statistical strategies and methods to efficiently identify genetic and environmental factors contributing to the risk of complex disease; and (2) how to develop, apply, and evaluate these strategies for the design, analysis, and interpretation of large‐scale complex disease association studies in order to guide NIH in setting the future agenda in this area of research. The workshop was organized as a series of short presentations covering scientific (gene‐gene and gene‐environment interaction, complex phenotypes, and rare variants and next generation sequencing) and methodological (simulation modeling and computational resources and data management) topic areas. Specific needs to advance the field were identified during each session and are summarized. Genet. Epidemiol . 36 : 22–35, 2012. © 2011 Wiley Periodicals, Inc. | en_US |
dc.publisher | University of Chicago | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Simulations | en_US |
dc.subject.other | Computational Resources | en_US |
dc.subject.other | Gene‐Gene Interactions | en_US |
dc.subject.other | Gene‐Environment Interactions | en_US |
dc.subject.other | Rare Variants | en_US |
dc.subject.other | Next Generation Sequencing | en_US |
dc.subject.other | Complex Phenotypes | en_US |
dc.title | Next generation analytic tools for large scale genetic epidemiology studies of complex diseases | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Biological Chemistry | en_US |
dc.subject.hlbsecondlevel | Genetics | en_US |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.identifier.pmid | 22147673 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/93578/1/gepi20652.pdf | |
dc.identifier.doi | 10.1002/gepi.20652 | en_US |
dc.identifier.source | Genetic Epidemiology | en_US |
dc.identifier.citedreference | Richter BG, Sexton DP. 2009. Managing and analyzing next‐generation sequence data. PLoS Comput Biol 5: e1000369. | en_US |
dc.identifier.citedreference | Kraft P, Hunter D. 2009. The challenge of assessing complex gene‐gene and gene‐environment interactions. In: Khoury M, Bedrosian S, Gwinn M, Higgins J, Ioannidis J, Little J, editors. Human Genome Epidemiology, 2nd edition. New York: Oxford University Press. | en_US |
dc.identifier.citedreference | Lander ES. 2011. Initial impact of the sequencing of the human genome. Nature 470: 187 – 197. | en_US |
dc.identifier.citedreference | Langholz B, Borgan Ø 1995. Counter‐matching: a stratified nested case‐control sampling method. Biometrika 82: 69 – 79. | en_US |
dc.identifier.citedreference | Laurie CC, Doheny KF, Mirel DB, Pugh EW, Bierut LJ, Bhangale T, Boehm F, Caporaso NE, Cornelis MC, Edenberg HJ, et al. 2010. Quality control and quality assurance in genotypic data for genome‐wide association studies. Genet Epidemiol 34: 591 – 602. | en_US |
dc.identifier.citedreference | Li D, Conti DV. 2009. Detecting gene‐environment interactions using a combined case‐only and case‐control approach. Am J Epidemiol 169: 497 – 504. | en_US |
dc.identifier.citedreference | Li B, Leal SM. 2008. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83: 311 – 321. | en_US |
dc.identifier.citedreference | Liu DJ, Leal SM. 2010. A novel adaptive method for the analysis of next‐generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet 6: e1001156. | en_US |
dc.identifier.citedreference | Liu Y, Athanasiadis G, Weale ME. 2008. A survey of genetic simulation software for population and epidemiological studies. Hum Genomics 3: 79 – 86. | en_US |
dc.identifier.citedreference | Madsen BE, Browning SR. 2009. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5: e1000384. | en_US |
dc.identifier.citedreference | Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. 2009. Finding the missing heritability of complex diseases. Nature 461: 747 – 753. | en_US |
dc.identifier.citedreference | Mardis ER. 2010. The $1,000 genome, the $100,000 analysis? Genome Med 2: 84. | en_US |
dc.identifier.citedreference | Milne R, Gaudet M, Spurdle A, Fasching P, Couch F, Benitez J, Arias Perez JI, Zamora MP, Malats N, dos Santos Silva I, et al. 2010. Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case‐control study. Breast Cancer Res 12: R110. | en_US |
dc.identifier.citedreference | Moore JH, Barney N, Tsai CT, Chiang FT, Gui J, White BC. 2007. Symbolic modeling of epistasis. Hum Hered 63: 120 – 133. | en_US |
dc.identifier.citedreference | Moore JH, Andrews PC, Barney N, White BC. 2008. Development and evaluation of an open‐ended computational evolution system for the genetic analysis of susceptibility to common human diseases. Lect Notes Comput Sci 4973: 129 – 140. | en_US |
dc.identifier.citedreference | Moore JH, Asselbergs FW, Williams SM. 2010. Bioinformatics challenges for genome‐wide association studies. Bioinformatics 26: 445 – 455. | en_US |
dc.identifier.citedreference | Moore J, Cowper Sal.Lari R, Hill D, Hibberd P, Madan J. 2011. Human microbiome visualization using 3D technology. Pac Symp Biocomput 16: 154 – 164. | en_US |
dc.identifier.citedreference | Morgenthaler S, Thilly WG. 2007. A strategy to discover genes that carry multi‐allelic or mono‐allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res/Fundam Mol Mech Mutagen 615: 28 – 56. | en_US |
dc.identifier.citedreference | Mukherjee B, Chatterjee N. 2008. Exploiting gene‐environment independence for analysis of case–control studies: an empirical bayes‐type shrinkage estimator to trade‐off between bias and efficiency. Biometrics 64: 685 – 694. | en_US |
dc.identifier.citedreference | Mukherjee B, Ahn J, Gruber SB, Chatterjee N. 2011. Testing gene‐environment interaction in large scale case‐control association studies: possible choices and comparisons. Am J Epidemiol. | en_US |
dc.identifier.citedreference | Murcray CE, Lewinger JP, Gauderman WJ. 2009. Gene‐environment interaction in genome‐wide association studies. Am J Epidemiol 169: 219 – 226. | en_US |
dc.identifier.citedreference | Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho‐Melander M, Kathiresan S, Purcell SM, Roeder K, Daly MJ. 2011. Testing for an unusual distribution of rare variants. PLoS Genet 7: e1001322. | en_US |
dc.identifier.citedreference | Peng B, Amos CI, Kimmel M. 2007. Forward‐time simulations of human populations with complex diseases. PLoS Genet 3: e47. | en_US |
dc.identifier.citedreference | Pennisi E. 2011. Human genome 10th anniversary. Will computers crash genomics? Science 331: 666 – 668. | en_US |
dc.identifier.citedreference | Piegorsch WW, Weinberg CR, Taylor JA. 1994. Non‐hierarchical logistic models and case‐only designs for assessing susceptibility in population‐based case‐control studies. Stat Med 13: 153 – 162. | en_US |
dc.identifier.citedreference | Price AL, Kryukov GV, de Bakker PIW, Purcell SM, Staples J, Wei L‐J, Sunyaev SR. 2010. Pooled association tests for rare variants in exon‐resequencing studies. Am J Hum Genet 86: 832 – 838. | en_US |
dc.identifier.citedreference | Ritchie MD, Bush WS. 2010. Genome simulation: approaches for synthesizing in silico datasets for human genomics. In: Jay CD, Jason HM, editors. Advances in Genetics. New York: Academic Press, p 1 – 24. | en_US |
dc.identifier.citedreference | Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. 2001. Multifactor‐dimensionality reduction reveals high‐order interactions among estrogen‐metabolism genes in sporadic breast cancer. Am J Hum Genet 69: 138 – 147. | en_US |
dc.identifier.citedreference | Rosenstiel P, Sina C, Franke A, Schreiber S. 2009. Towards a molecular risk map—recent advances on the etiology of inflammatory bowel disease. Semin Immunol 21: 334 – 345. | en_US |
dc.identifier.citedreference | Rothman KJ, Greenland S, Walker AM. 1980. Concepts of interaction. Am J Epidemiol 112: 467 – 470. | en_US |
dc.identifier.citedreference | Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, GuhaThakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, et al. 2005. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37: 710 – 717. | en_US |
dc.identifier.citedreference | Schwarz DF, König IR, Ziegler A. 2010. On safari to Random Jungle: a fast implementation of Random Forests for high‐dimensional data. Bioinformatics 26: 1752 – 1758. | en_US |
dc.identifier.citedreference | Siemiatycki J, Thomas DC. 1981. Biological models and statistical interactions: an example from multistage carcinogenesis. Int J Epidemiol 10: 383 – 387. | en_US |
dc.identifier.citedreference | Sinnott‐Armstrong N, Greene C, Cancare F, Moore J. 2009. Accelerating epistasis analysis in human genetics with consumer graphics hardware. BMC Res Notes 2: 149. | en_US |
dc.identifier.citedreference | Smith GD, Ebrahim S. 2004. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol 33: 30 – 42. | en_US |
dc.identifier.citedreference | Stein LD. 2010. The case for cloud computing in genome informatics. Genome Biol 11: 207. | en_US |
dc.identifier.citedreference | Stephens M. 2010. A Unified Framework for Testing Multiple Phenotypes for Association with Genetic Variants. Washington DC: The American Society of Human Genetics. | en_US |
dc.identifier.citedreference | International HapMap Consortium. 2005. A haplotype map of the human genome. Nature 437: 1299 ‐ 1320. | en_US |
dc.identifier.citedreference | Thomas D. 2004. Statistical Methods in Genetic Epidemiology. New York: Oxford University Press. | en_US |
dc.identifier.citedreference | Thomas D. 2010. Gene‐environment‐wide association studies: emerging approaches. Nat Rev Genet 11: 259 – 272. | en_US |
dc.identifier.citedreference | Thomas DC, Lewinger JP, Murcray CE, Gauderman WJ. 2011. GE‐whiz! Ratcheting gene‐environment studies up to the whole genome and the whole exposome. Am J Epidemiol. | en_US |
dc.identifier.citedreference | Thompson WD. 1991. Effect modification and the limits of biological inference from epidemiologic data. J Clin Epidemiol 44: 221 – 232. | en_US |
dc.identifier.citedreference | Turner S, Armstrong LL, Bradford Y, Carlson CS, Crawford DC, Crenshaw AT, de Andrade M, Doheny KF, Haines JL, Hayes G, et al. 2001. Quality Control Procedures for Genome‐Wide Association Studies. New York: Wiley. | en_US |
dc.identifier.citedreference | Vansteelandt S, Goetgeluk S, Lutz S, Waldman I, Lyon H, Schadt EE, Weiss ST, Lange C. 2009. On the adjustment for covariates in genetic association analysis: a novel, simple principle to infer direct causal effects. Genet Epidemiol 33: 394 – 405. | en_US |
dc.identifier.citedreference | Vineis P, Perera F. 2007. Molecular epidemiology and biomarkers in etiologic cancer research: the new in light of the old. Cancer Epidemiol Biomarkers Prev 16: 1954 – 1965. | en_US |
dc.identifier.citedreference | Weinberg CR. 1986. Applicability of the simple independent action model to epidemiologic studies involving two factors and a dichotomous outcome. Am J Epidemiol 123: 162 – 173. | en_US |
dc.identifier.citedreference | Zawistowski M, Gopalakrishnan S, Ding J, Li Y, Grimm S, Zöllner S. 2010. Extending rare‐variant testing strategies: analysis of noncoding sequence and imputed genotypes. Am J Hum Genet 87: 604– 617. | en_US |
dc.identifier.citedreference | Zeggini E. 2011. Next‐generation association studies for complex traits. Nat Genet 43: 287 – 288. | en_US |
dc.identifier.citedreference | Zhang Y, Liu JS. 2007. Bayesian inference of epistatic interactions in case‐control studies. Nat Genet 39: 1167 – 1173. | en_US |
dc.identifier.citedreference | Zhang J, Chiodini R, Badr A, Zhang G. 2011. The impact of next‐generation sequencing on genomics. J Genet Genomics 38: 95 – 109. | en_US |
dc.identifier.citedreference | Zhou H, Sehl ME, Sinsheimer JS, Lange K. 2010. Association screening of common and rare genetic variants by penalized regression. Bioinformatics 26: 2375 – 2382. | en_US |
dc.identifier.citedreference | Albert PS, Ratnasinghe D, Tangrea J, Wacholder S. 2001. Limitations of the case‐only design for identifying gene‐environment interactions. Am J Epidemiol 154: 687 – 693. | en_US |
dc.identifier.citedreference | Andrieu N, Goldstein AM, Thomas DC, Langholz B. 2001. Counter‐matching in studies of gene‐environment interaction: efficiency and feasibility. Am J Epidemiol 153: 265 – 274. | en_US |
dc.identifier.citedreference | Bansal V, Libiger O, Torkamani A, Schork NJ. 2010. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11: 773 – 785. | en_US |
dc.identifier.citedreference | Blot WJ, Day NE. 1979. Synergism and interaction: are they equivalent? Am J Epidemiol 110: 99 – 100. | en_US |
dc.identifier.citedreference | Bochud M, Chiolero A, Elston RC, Paccaud F. 2008. A cautionary note on the use of Mendelian randomization to infer causation in observational epidemiology. Int J Epidemiol 37: 414 – 416. | en_US |
dc.identifier.citedreference | Breslow NE, Chatterjee N. 1998. Design and analysis of two‐phase studies with binary outcomes. Appl Stat 48: 457 – 468. | en_US |
dc.identifier.citedreference | Broeks A, Schmidt MK, Sherman ME, Couch FJ, Hopper JL, Dite GS, Apicella C, Smith LD, Hammet F, Southey MC, Van t Veer LJ, de Groot R, Smit VTHBM, Fasching PA, Beckmann MW, Jud S, Ekici AB, Hartmann A, Hein A, Schulz‐Wendtland R, Burwinkel B, Marme F, Schneeweiss A, Sinn H‐P, Sohn C, Tchatchou S, Bojesen SE, Nordestgaard BG, Flyger H, Ørsted DD, Kaur‐Knudsen D, Milne RL, Pérez JIA, Zamora P, Rodríguez PM, Benítez J, Brauch H, Justenhoven C, Ko Y‐D, Network TG, Hamann U, Fischer H‐P, Brüning T, Pesch B, Chang‐Claude J, Wang‐Gohrke S, Bremer M, Karstens JH, Hillemanns P, Dörk T, Nevanlinna HA, Heikkinen T, Heikkilä P, Blomqvist C, Aittomäki K, Aaltonen K, Lindblom A, Margolin S, Mannermaa A, Kosma V‐M, Kauppinen JM, Kataja V, Auvinen P, Eskelinen M, Soini Y, Chenevix‐Trench G, Spurdle AB, Beesley J, Chen X, Holland H, kConFab AOCS, Lambrechts D, Claes B, Vandorpe T, Neven P, Wildiers H, Flesch‐Janys D, Hein R, Löning T, Kosel M, Fredericksen ZS, Wang X, Giles GG, Baglietto L, Severi G, McLean C, Haiman CA, Henderson BE, Le Marchand L, Kolonel LN, Grenaker Alnæs G, Kristensen V, Børresen‐Dale A‐L, Hunter DJ, Hankinson SE, Andrulis IL, Marie Mulligan A, O'Malley FP, Devilee P, Huijts PEA, Tollenaar RAEM, Van Asperen CJ, Seynaeve CS, Chanock SJ, Lissowska J, Brinton L, Peplonska B, Figueroa J, Yang XR, Hooning MJ, Hollestelle A, Oldenburg RA, Jager A, Kriege M, Ozturk B, van Leenders GJLH, Hall P, Czene K, Humphreys K, Liu J, Cox A, Connley D, Cramp HE, Cross SS, Balasubramanian SP, Reed MWR, Dunning AM, Easton DF, Humphreys MK, Caldas C, Blows F, Driver K, Provenzano E, Lubinski J, Jakubowska A, Huzarski T, Byrski T, Cybulski C, Gorski B, Gronwald J, Brennan P, Sangrajrang S, Gaborieau V, Shen C‐Y, Hsiung C‐N, Yu J‐C, Chen S‐T, Hsu G‐C, Hou M‐F, Huang C‐S, Anton‐Culver H, Ziogas A, Pharoah PDP, Garcia‐Closas M. 2011. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet 20: 3289 – 3303. | en_US |
dc.identifier.citedreference | Carvajal‐Carmona LG. 2010. Challenges in the identification and use of rare disease‐associated predisposition variants. Curr Opin Genet Dev 20: 277 – 281. | en_US |
dc.identifier.citedreference | Chen YH, Chatterjee N, Carroll RJ. 2009. Shrinkage estimators for robust and efficient inference in haplotype‐based case‐control studies. J Am Stat Assoc 104: 220 – 233. | en_US |
dc.identifier.citedreference | Ciampa J, Yeager M, Amundadottir L, Jacobs K, Kraft P, Chung C, Wacholder S, Yu K, Wheeler W, Thun MJ, Divers WR, Gapstur S, Albanes D, Virtamo J, Weinstein S, Giovannucci E, Willet WC, Cancel‐Tassin G, Cussenot O, Valeri A, Hunter D, Hoover R, Thomas G, Chanock S, Chatterjee N. 2011. Large scale exploration of gene‐gene interactions in prostate cancer using a multi‐stage genome‐wide association study. Cancer Res 71: 3287 – 3295. | en_US |
dc.identifier.citedreference | Cirulli ET, Goldstein DB. 2010. Uncovering the roles of rare variants in common disease through whole‐genome sequencing. Nat Rev Genet 11: 415 – 425. | en_US |
dc.identifier.citedreference | Cordell HJ. 2009. Detecting gene‐gene interactions that underlie human diseases. Nat Rev Genet 10: 392 – 404. | en_US |
dc.identifier.citedreference | Cornelis MC, Tchetgen Tchetgen EJ, Liang L, Qi L, Chatterjee N, Hu FB, Kraft P. 2011. Gene‐environment interactions in genome‐wide association studies: a comparative study of tests applied to empirical studies of type 2 diabetes. Am J Epidemiol. | en_US |
dc.identifier.citedreference | Cox NJ. 2010. Complex traits. University of Chicago. | en_US |
dc.identifier.citedreference | De Silva NM, Frayling TM. 2010. Novel biological insights emerging from genetic studies of type 2 diabetes and related metabolic traits. Curr Opin Lipidol 21: 44 – 50. | en_US |
dc.identifier.citedreference | Drake T, Schadt E, Lusis A. 2006. Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice. Mamm Genome 17: 466 – 479. | en_US |
dc.identifier.citedreference | Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. 2010. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11: 446 – 450. | en_US |
dc.identifier.citedreference | Gottesman II, Gould TD. 2003. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160: 636 – 645. | en_US |
dc.identifier.citedreference | Green ED, Guyer MS. 2011. Charting a course for genomic medicine from base pairs to bedside. Nature 470: 204 – 213. | en_US |
dc.identifier.citedreference | Greene CS, Sinnott‐Armstrong NA, Himmelstein DS, Park PJ, Moore JH, Harris BT. 2010. Multifactor dimensionality reduction for graphics processing units enables genome‐wide testing of epistasis in sporadic ALS. Bioinformatics 26: 694 – 695. | en_US |
dc.identifier.citedreference | Greenland S. 1993. Basic problems in interaction assessment. Environ Health Perspect 101: 59 – 66. | en_US |
dc.identifier.citedreference | Han F, Pan W. 2010. A data‐adaptive sum test for disease association with multiple common or rare variants. Hum Hered 70: 42 – 54. | en_US |
dc.identifier.citedreference | Hill WG, Goddard ME, Visscher PM. 2008. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4: e1000008. | en_US |
dc.identifier.citedreference | Hoffmann TJ, Marini NJ, Witte JS. 2010. Comprehensive approach to analyzing rare genetic variants. PLoS ONE 5: e13584. | en_US |
dc.identifier.citedreference | International HapMap3 Consortium TIH. 2010. Integrating common and rare genetic variation in diverse human populations. Nature 467: 52 – 58. | en_US |
dc.identifier.citedreference | International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Shen Y, Sun W, Wang H, Wang Y, Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong JT, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallée C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon‐Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe'er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF, Sham PC, Varilly P, Altshuler D, Stein LD, Krishnan L, Smith AV, Tello‐Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Tsunoda T, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Zeng C, Zhao H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CD, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton EW, Watkin J, Gibbs RA, Belmont JW, Muzny D, Nazareth L, Sodergren E, Weinstock GM, Wheeler DA, Yakub I, Gabriel SB, Onofrio RC, Richter DJ, Ziaugra L, Birren BW, Daly MJ, Altshuler D, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z, Han H, Kang L, Godbout M, Wallenburg JC, L'Archevêque P, Bellemare G, Saeki K, Wang H, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J. 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851 – 861. | en_US |
dc.identifier.citedreference | Jirtle RL, Skinner MK. 2007. Environmental epigenomics and disease susceptibility. Nat Rev Genet 8: 253 – 262. | en_US |
dc.identifier.citedreference | Kendler KS, Neale MC. 2010. Endophenotype: a conceptual analysis. Mol Psychiatry 15: 789 – 797. | en_US |
dc.identifier.citedreference | Klein RJ, Zeiss C, Chew EY, Tsai J‐Y, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, et al. 2005. Complement factor H polymorphism in age‐related macular degeneration. Science 308: 385 – 389. | en_US |
dc.identifier.citedreference | Kooperberg C, Ruczinski I. 2005. Identifying interacting SNPs using Monte Carlo logic regression. Genet Epidemiol 28: 157 – 170. | en_US |
dc.identifier.citedreference | Kooperberg C, Ruczinski I, LeBlanc ML, Hsu L. 2001. Sequence analysis using logic regression. Genet Epidemiol 21: S626 – S631. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.