Show simple item record

Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation

dc.contributor.authorWahl, Daniel R.en_US
dc.contributor.authorByersdorfer, Craig A.en_US
dc.contributor.authorFerrara, James L. M.en_US
dc.contributor.authorOpipari, Anthony W.en_US
dc.contributor.authorGlick, Gary D.en_US
dc.date.accessioned2012-09-05T14:46:17Z
dc.date.available2013-10-18T17:47:30Zen_US
dc.date.issued2012-09en_US
dc.identifier.citationWahl, Daniel R.; Byersdorfer, Craig A.; Ferrara, James L. M.; Opipari, Anthony W.; Glick, Gary D. (2012). "Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation." Immunological Reviews (1): 104-115. <http://hdl.handle.net/2027.42/93581>en_US
dc.identifier.issn0105-2896en_US
dc.identifier.issn1600-065Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93581
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherBz‐423en_US
dc.subject.otherGlycolysisen_US
dc.subject.otherMetabolismen_US
dc.subject.otherLymphocyteen_US
dc.subject.otherOxidative Phosphorylationen_US
dc.subject.otherReactive Oxygen Speciesen_US
dc.titleDistinct metabolic programs in activated T cells: opportunities for selective immunomodulationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22889218en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93581/1/imr1148.pdf
dc.identifier.doi10.1111/j.1600-065X.2012.01148.xen_US
dc.identifier.sourceImmunological Reviewsen_US
dc.identifier.citedreferenceSariban‐Sohraby S, Magrath IT, Balaban RS. Comparison of energy metabolism in human normal and neoplastic (Burkitt's lymphoma) lymphoid cells. Cancer Res 1983; 43: 4662 – 4664.en_US
dc.identifier.citedreferenceMichalek RD, Rathmell JC. The metabolic life and times of a T‐cell. Immunol Rev 2010; 236: 190 – 202.en_US
dc.identifier.citedreferenceMaxwell PH, et al. The tumour suppressor protein VHL targets hypoxia‐inducible factors for oxygen‐dependent proteolysis. Nature 1999; 399: 271 – 275.en_US
dc.identifier.citedreferenceJiang BH, Semenza GL, Bauer C, Marti HH. Hypoxia‐inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 1996; 271: C1172 – C1180.en_US
dc.identifier.citedreferenceZhang DX, Gutterman DD. Mitochondrial reactive oxygen species‐mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 2007; 292: H2023 – H2031.en_US
dc.identifier.citedreferenceBoveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen.. Biochem J 1973; 134: 707 – 716.en_US
dc.identifier.citedreferenceMurphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417: 1 – 13.en_US
dc.identifier.citedreferenceLambert AJ, Brand MD. Reactive oxygen species production by mitochondria. Methods Mol Biol 2009; 554: 165 – 181.en_US
dc.identifier.citedreferenceGergely P Jr, et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum 2002; 46: 175 – 190.en_US
dc.identifier.citedreferenceAmer J, Weiss L, Reich S, Shapira MY, Slavin S, Fibach E. The oxidative status of blood cells in a murine model of graft‐versus‐host disease. Ann Hematol 2007; 86: 753 – 758.en_US
dc.identifier.citedreferenceLin X, etal. 2‐Deoxy‐D‐glucose‐induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism. Cancer Res 2003; 63: 3413 – 3417.en_US
dc.identifier.citedreferenceJones RG, et al. The proapoptotic factors Bax and Bak regulate T Cell proliferation through control of endoplasmic reticulum Ca(2+) homeostasis. Immunity 2007; 27: 268 – 280.en_US
dc.identifier.citedreferenceBassenge E, Sommer O, Schwemmer M, Bunger R. Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state. Am J Physiol Heart Circ Physiol 2000; 279: H2431 – H2438.en_US
dc.identifier.citedreferenceJensen MV, et al. Compensatory responses to pyruvate carboxylase suppression in islet beta‐cells. Preservation of glucose‐stimulated insulin secretion. J Biol Chem 2006; 281: 22342 – 22351.en_US
dc.identifier.citedreferenceBobe P, Bonardelle D, Benihoud K, Opolon P, Chelbi‐Alix MK. Arsenic trioxide: a promising novel therapeutic agent for lymphoproliferative and autoimmune syndromes in MRL/lpr mice. Blood 2006; 108: 3967 – 3975.en_US
dc.identifier.citedreferenceWalsh AC, Michaud SG, Malossi JA, Lawrence DA. Glutathione depletion in human T lymphocytes: analysis of activation‐associated gene expression and the stress response. Toxicol Appl Pharmacol 1995; 133: 249 – 261.en_US
dc.identifier.citedreferenceHildeman DA, Mitchell T, Kappler J, Marrack P. T cell apoptosis and reactive oxygen species. J Clin Invest 2003; 111: 575 – 581.en_US
dc.identifier.citedreferenceSimsek T, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010; 7: 380 – 390.en_US
dc.identifier.citedreferenceJohnson KM, Chen X, Boitano A, Swenson L, Opipari AW Jr, Glick GD. Identification and validation of the mitochondrial F1F0‐ATPase as the molecular target of the immunomodulatory benzodiazepine Bz‐423. Chem Biol 2005; 12: 485 – 496.en_US
dc.identifier.citedreferenceBlatt NB, et al. Benzodiazepine‐induced superoxide signals B cell apoptosis: mechanistic insight and potential therapeutic utility. J Clin Invest 2002; 110: 1123 – 1132.en_US
dc.identifier.citedreferenceBlatt NB, Boitano AE, Lyssiotis CA, Opipari AW Jr, Glick GD. Bz‐423 superoxide signals apoptosis via selective activation of JNK, Bak, and Bax. Free Radic Biol Med 2008; 45: 1232 – 1242.en_US
dc.identifier.citedreferenceBlatt NB, Boitano AE, Lyssiotis CA, Opipari AW Jr, Glick GD. Bz‐423 superoxide signals B cell apoptosis via Mcl‐1, Bak, and Bax. Biochem Pharmacol 2009; 78: 966 – 973.en_US
dc.identifier.citedreferenceCleary J, Johnson KM, Opipari AW Jr, Glick GD. Inhibition of the mitochondrial F1F0‐ATPase by ligands of the peripheral benzodiazepine receptor. Bioorg Med Chem Lett 2007; 17: 1667 – 1670.en_US
dc.identifier.citedreferenceSundberg TB, Swenson L, Wahl DR, Opipari AW Jr, Glick GD. Apoptotic signaling activated by modulation of the F0F1‐ATPase: implications for selective killing of autoimmune lymphocytes. J Pharmacol Exp Ther 2009; 331: 437 – 444.en_US
dc.identifier.citedreferenceBednarski JJ, et al. Attenuation of autoimmune disease in Fas‐deficient mice by treatment with a cytotoxic benzodiazepine. Arthritis Rheum 2003; 48: 757 – 766.en_US
dc.identifier.citedreferenceFox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T‐cell response. Nat Rev Immunol 2005; 5: 844 – 852.en_US
dc.identifier.citedreferenceButtgereit F, Brand MD, Muller M. ConA induced changes in energy metabolism of rat thymocytes. Biosci Rep 1992; 12: 381 – 386.en_US
dc.identifier.citedreferenceGreiner EF, Guppy M, Brand K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem 1994; 269: 31484 – 31490.en_US
dc.identifier.citedreferenceBrand K, Fekl W, von Hintzenstern J, Langer K, Luppa P, Schoerner C. Metabolism of glutamine in lymphocytes. Metabolism 1989; 38: 29 – 33.en_US
dc.identifier.citedreferenceArdawi MS, Newsholme EA. Metabolism of ketone bodies, oleate and glucose in lymphocytes of the rat. Biochem J 1984; 221: 255 – 260.en_US
dc.identifier.citedreferenceGuppy M, Greiner E, Brand K. The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur J Biochem 1993; 212: 95 – 99.en_US
dc.identifier.citedreferenceFrauwirth KA, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002; 16: 769 – 777.en_US
dc.identifier.citedreferenceJacobs SR, et al. Glucose uptake is limiting in T cell activation and requires CD28‐mediated Akt‐dependent and independent pathways. J Immunol 2008; 180: 4476 – 4486.en_US
dc.identifier.citedreferenceVander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029 – 1033.en_US
dc.identifier.citedreferenceCooper EH, Barkhan P, Hale AJ. Observations on the proliferation of human leucocytes cultured with phytohaemagglutinin. Br J Haematol 1963; 9: 101 – 111.en_US
dc.identifier.citedreferenceBrand K. Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. Biochem J 1985; 228: 353 – 361.en_US
dc.identifier.citedreferenceBrand KA, Hermfisse U. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J 1997; 11: 388 – 395.en_US
dc.identifier.citedreferenceWang R, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 2011; 35: 871 – 882.en_US
dc.identifier.citedreferenceLum JJ, et al. The transcription factor HIF‐1alpha plays a critical role in the growth factor‐dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 2007; 21: 1037 – 1049.en_US
dc.identifier.citedreferenceCham CM, Gajewski TF. Glucose availability regulates IFN‐gamma production and p70S6 kinase activation in CD8+ effector T cells. J Immunol 2005; 174: 4670 – 4677.en_US
dc.identifier.citedreferenceDoughty CA, et al. Antigen receptor‐mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3‐kinase signaling in the glycolytic control of growth. Blood 2006; 107: 4458 – 4465.en_US
dc.identifier.citedreferenceDeberardinis RJ, Lum JJ, Thompson CB. Phosphatidylinositol 3‐kinase‐dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem 2006; 281: 37372 – 37380.en_US
dc.identifier.citedreferenceArdawi MS, Newsholme EA. Glutamine metabolism in lymphocytes of the rat. Biochem J 1983; 212: 835 – 842.en_US
dc.identifier.citedreferenceYaqoob P, Calder PC. Glutamine requirement of proliferating T lymphocytes. Nutrition 1997; 13: 646 – 651.en_US
dc.identifier.citedreferenceTripmacher R, et al. Human CD4(+) T cells maintain specific functions even under conditions of extremely restricted ATP production. Eur J Immunol 2008; 38: 1631 – 1642.en_US
dc.identifier.citedreferenceDeBerardinis RJ, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010; 29: 313 – 324.en_US
dc.identifier.citedreferenceWarburg O. On the origin of cancer cells. Science 1956; 123: 309 – 314.en_US
dc.identifier.citedreferenceVaughn AE, Deshmukh M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol 2008; 10: 1477 – 1483.en_US
dc.identifier.citedreferenceRathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB. Akt‐directed glucose metabolism can prevent Bax conformation change and promote growth factor‐independent survival. Mol Cell Biol 2003; 23: 7315 – 7328.en_US
dc.identifier.citedreferenceGottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 2001; 15: 1406 – 1418.en_US
dc.identifier.citedreferenceDeprez J, Vertommen D, Alessi DR, Hue L, Rider MH. Phosphorylation and activation of heart 6‐phosphofructo‐2‐kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 1997; 272: 17269 – 17275.en_US
dc.identifier.citedreferenceFrauwirth KA, Thompson CB. Regulation of T lymphocyte metabolism. J Immunol 2004; 172: 4661 – 4665.en_US
dc.identifier.citedreferenceNogueira V, et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 2008; 14: 458 – 470.en_US
dc.identifier.citedreferenceBerwick DC, Hers I, Heesom KJ, Moule SK, Tavare JM. The identification of ATP‐citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J Biol Chem 2002; 277: 33895 – 33900.en_US
dc.identifier.citedreferenceBauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB. ATP citrate lyase is an important component of cell growth and transformation. Oncogene 2005; 24: 6314 – 6322.en_US
dc.identifier.citedreferenceHatzivassiliou G, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005; 8: 311 – 321.en_US
dc.identifier.citedreferenceParry RV, et al. CTLA‐4 and PD‐1 receptors inhibit T‐cell activation by distinct mechanisms. Mol Cell Biol 2005; 25: 9543 – 9553.en_US
dc.identifier.citedreferenceHe S, et al. Characterization of the metabolic phenotype of rapamycin‐treated CD8+ T cells with augmented ability to generate long‐lasting memory cells. PLoS ONE 2011; 6: e20107.en_US
dc.identifier.citedreferenceMichalek RD, et al. Estrogen‐related receptor‐alpha is a metabolic regulator of effector T‐cell activation and differentiation. Proc Natl Acad Sci USA 2011; 108: 18348 – 18353.en_US
dc.identifier.citedreferenceMacintyre AN, et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 2011; 34: 224 – 236.en_US
dc.identifier.citedreferenceCham CM, Driessens G, O'Keefe JP, Gajewski TF. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol 2008; 38: 2438 – 2450.en_US
dc.identifier.citedreferencePearce EL, et al. Enhancing CD8 T‐cell memory by modulating fatty acid metabolism. Nature 2009; 460: 103 – 107.en_US
dc.identifier.citedreferencevan der Windt GJ, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 2012; 36: 68 – 78.en_US
dc.identifier.citedreferenceDe Boer RJ, Homann D, Perelson AS. Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J Immunol 2003; 171: 3928 – 3935.en_US
dc.identifier.citedreferenceHomann D, Teyton L, Oldstone MB. Differential regulation of antiviral T‐cell immunity results in stable CD8+ but declining CD4+ T‐cell memory. Nat Med 2001; 7: 913 – 919.en_US
dc.identifier.citedreferenceHand TW, et al. Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T‐cell survival. Proc Natl Acad Sci U S A 2010; 107: 16601 – 16606.en_US
dc.identifier.citedreferenceSaibil SD, et al. CD4+ and CD8+ T cell survival is regulated differentially by protein kinase Ctheta, c‐Rel, and protein kinase B. J Immunol 2007; 178: 2932 – 2939.en_US
dc.identifier.citedreferenceRathmell JC, Elstrom RL, Cinalli RM, Thompson CB. Activated Akt promotes increased resting T cell size, CD28‐independent T cell growth, and development of autoimmunity and lymphoma. Eur J Immunol 2003; 33: 2223 – 2232.en_US
dc.identifier.citedreferenceMichalek RD, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 2011; 186: 3299 – 3303.en_US
dc.identifier.citedreferenceShi LZ, et al. HIF1alpha‐dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 2011; 208: 1367 – 1376.en_US
dc.identifier.citedreferenceDang EV, et al. Control of T(H)17/T(reg) balance by hypoxia‐inducible factor 1. Cell 2011; 146: 772 – 784.en_US
dc.identifier.citedreferenceSemenza GL. Regulation of cancer cell metabolism by hypoxia‐inducible factor 1. Semin Cancer Biol 2009; 19: 12 – 16.en_US
dc.identifier.citedreferenceKim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF‐1‐mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177 – 185.en_US
dc.identifier.citedreferenceRuderman NB, Saha AK, Kraegen EW. Minireview: malonyl CoA, AMP‐activated protein kinase, and adiposity. Endocrinology 2003; 144: 5166 – 5171.en_US
dc.identifier.citedreferenceZhang BB, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 2009; 9: 407 – 416.en_US
dc.identifier.citedreferenceKudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl‐CoA levels due to an increase in 5'‐AMP‐activated protein kinase inhibition of acetyl‐CoA carboxylase. J Biol Chem 1995; 270: 17513 – 17520.en_US
dc.identifier.citedreferenceRubtsov YP, et al. Stability of the regulatory T cell lineage in vivo. Science 2010; 329: 1667 – 1671.en_US
dc.identifier.citedreferenceHuang CY, Bredemeyer AL, Walker LM, Bassing CH, Sleckman BP. Dynamic regulation of c‐Myc proto‐oncogene expression during lymphocyte development revealed by a GFP‐c‐Myc knock‐in mouse. Eur J Immunol 2008; 38: 342 – 349.en_US
dc.identifier.citedreferenceRoos D, Loos JA. Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. II. Relative importance of glycolysis and oxidative phosphorylation on phytohaemagglutinin stimulation. Exp Cell Res 1973; 77: 127 – 135.en_US
dc.identifier.citedreferenceShaner RL, et al. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J Lipid Res 2009; 50: 1692 – 1707.en_US
dc.identifier.citedreferenceParry‐Billings M, Evans J, Calder PC, Newsholme EA. Does glutamine contribute to immunosuppression after major burns? Lancet 1990; 336: 523 – 525.en_US
dc.identifier.citedreferenceKuriki K, Tajima K, Tokudome S. Accelerated solvent extraction for quantitative measurement of fatty acids in plasma and erythrocytes. Lipids 2006; 41: 605 – 614.en_US
dc.identifier.citedreferenceAndersson C, et al. Cell culture models demonstrate that CFTR dysfunction leads to defective fatty acid composition and metabolism. J Lipid Res 2008; 49: 1692 – 1700.en_US
dc.identifier.citedreferenceAtkuri KR, Herzenberg LA, Niemi AK, Cowan T. Importance of culturing primary lymphocytes at physiological oxygen levels. Proc Natl Acad Sci USA 2007; 104: 4547 – 4552.en_US
dc.identifier.citedreferenceAtkuri KR, Herzenberg LA. Culturing at atmospheric oxygen levels impacts lymphocyte function. Proc Natl Acad Sci USA 2005; 102: 3756 – 3759.en_US
dc.identifier.citedreferenceCaldwell CC, et al. Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. Journal of immunology 2001; 167: 6140 – 6149.en_US
dc.identifier.citedreferenceOuali F, Djouadi F, Bastin J. Effects of fatty acids on mitochondrial beta‐oxidation enzyme gene expression in renal cell lines. Am J Physiol Renal Physiol 2002; 283: F328 – 334.en_US
dc.identifier.citedreferencevan der Lee KA, et al. Long‐chain fatty acid‐induced changes in gene expression in neonatal cardiac myocytes. J Lipid Res 2000; 41: 41 – 47.en_US
dc.identifier.citedreferenceBolon C, Gauthier C, Simonnet H. Glycolysis inhibition by palmitate in renal cells cultured in a two‐chamber system. Am J Physiol 1997; 273: C1732 – C1738.en_US
dc.identifier.citedreferenceBousso P, Robey E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 2003; 4: 579 – 585.en_US
dc.identifier.citedreferenceGatza E, et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft‐versus‐host disease. Sci Transl Med 2011; 3: 67ra68.en_US
dc.identifier.citedreferenceWahl DR, Petersen B, Warner R, Richardson BC, Glick GD, Opipari AW. Characterization of the metabolic phenotype of chronically activated lymphocytes. Lupus 2010; 19: 1492 – 1501.en_US
dc.identifier.citedreferencePietra BA, De Inocencio J, Giannini EH, Hirsch R. TCR V beta family repertoire and T cell activation markers in Kawasaki disease. J Immunol 1994; 153: 1881 – 1888.en_US
dc.identifier.citedreferenceBlattman JN, et al. Estimating the precursor frequency of naive antigen‐specific CD8 T cells. J Exp Med 2002; 195: 657 – 664.en_US
dc.identifier.citedreferenceFraser JD, Proft T. The bacterial superantigen and superantigen‐like proteins. Immunol Rev 2008; 225: 226 – 243.en_US
dc.identifier.citedreferenceVabulas R, Bittlingmaier R, Heeg K, Wagner H, Miethke T. Rapid clearance of the bacterial superantigen staphylococcal enterotoxin B in vivo. Infect Immun 1996; 64: 4567 – 4573.en_US
dc.identifier.citedreferenceHowie JB, Helyer BJ. The immunology and pathology of NZB mice. Adv Immunol 1968; 9: 215 – 266.en_US
dc.identifier.citedreferenceNagy G, Barcza M, Gonchoroff N, Phillips PE, Perl A. Nitric oxide‐dependent mitochondrial biogenesis generates Ca2+ signaling profile of lupus T cells. J Immunol 2004; 173: 3676 – 3683.en_US
dc.identifier.citedreferenceKuhnke A, Burmester GR, Krauss S, Buttgereit F. Bioenergetics of immune cells to assess rheumatic disease activity and efficacy of glucocorticoid treatment. Ann Rheum Dis 2003; 62: 133 – 139.en_US
dc.identifier.citedreferenceFerrara JL, Levine JE, Reddy P, Holler E. Graft‐versus‐host disease. Lancet 2009; 373: 1550 – 1561.en_US
dc.identifier.citedreferenceStelljes M, et al. Clinical molecular imaging in intestinal graft‐versus‐host disease: mapping of disease activity, prediction, and monitoring of treatment efficiency by positron emission tomography. Blood 2008; 111: 2909 – 2918.en_US
dc.identifier.citedreferenceRogers GW, et al. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS ONE 2011; 6: e21746.en_US
dc.identifier.citedreferenceZhang Y, Louboutin JP, Zhu J, Rivera AJ, Emerson SG. Preterminal host dendritic cells in irradiated mice prime CD8+ T cell‐mediated acute graft‐versus‐host disease. J Clin Investig 2002; 109: 1335 – 1344.en_US
dc.identifier.citedreferenceKoyama M, et al. Recipient nonhematopoietic antigen‐presenting cells are sufficient to induce lethal acute graft‐versus‐host disease. Nat Med 2012; 18: 135 – 142.en_US
dc.identifier.citedreferenceKato K, et al. Identification of stem cell transcriptional programs normally expressed in embryonic and neural stem cells in alloreactive CD8+ T cells mediating graft‐versus‐host disease. Biol Blood Marrow Transplant 2010; 16: 751 – 771.en_US
dc.identifier.citedreferenceKaneto H, Suzuma K, Sharma A, Bonner‐Weir S, King GL, Weir GC. Involvement of protein kinase C beta 2 in c‐myc induction by high glucose in pancreatic beta‐cells. J Biol Chem 2002; 277: 3680 – 3685.en_US
dc.identifier.citedreferenceLukashev D, Caldwell C, Ohta A, Chen P, Sitkovsky M. Differential regulation of two alternatively spliced isoforms of hypoxia‐inducible factor‐1 alpha in activated T lymphocytes. J Biol Chem 2001; 276: 48754 – 48763.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.