Show simple item record

Polytopic vector analysis of soil, dust, and serum samples to evaluate exposure sources of PCDD/Fs

dc.contributor.authorTowey, Timothy P.en_US
dc.contributor.authorBarabás, Noémien_US
dc.contributor.authorDemond, Averyen_US
dc.contributor.authorFranzblau, Alfreden_US
dc.contributor.authorGarabrant, David H.en_US
dc.contributor.authorGillespie, Brenda W.en_US
dc.contributor.authorLepkowski, Jamesen_US
dc.contributor.authorAdriaens, Peteren_US
dc.date.accessioned2012-10-02T17:19:57Z
dc.date.available2013-11-04T19:53:16Zen_US
dc.date.issued2012-10en_US
dc.identifier.citationTowey, Timothy P.; Barabás, Noémi ; Demond, Avery; Franzblau, Alfred; Garabrant, David H.; Gillespie, Brenda W.; Lepkowski, James; Adriaens, Peter (2012). "Polytopic vector analysis of soil, dust, and serum samples to evaluate exposure sources of PCDD/Fs." Environmental Toxicology and Chemistry 31(10): 2191-2200. <http://hdl.handle.net/2027.42/93658>en_US
dc.identifier.issn0730-7268en_US
dc.identifier.issn1552-8618en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93658
dc.description.abstractAs part of the University of Michigan Dioxin Exposure Study, soil, household dust, and serum samples were collected from more than 750 households in five populations around the city of Midland and in Jackson and Calhoun Counties, Michigan, USA. Polytopic vector analysis, a type of receptor model, was applied to better understand the potential sources of polychlorinated dibenzo‐ p ‐dioxins and polychlorinated dibenzofurans found in these samples and to quantify the contributions of the sources in each matrix across populations. The results indicated that source signatures found in soil are similar to those found in dust, reflecting various combustion profiles, pentachlorophenol, and graphite electrode sludge. The profiles associated with contamination in the Tittabawassee River, likely related to historical discharges from the Dow Chemical Company facility in Midland, exhibited the largest differences among the regional populations sampled. Differences in serum source contributions among the study populations were consistent with some of the regional differences observed in soil samples. However, the age trends of these differences suggested that they are related to past exposures, rather than ongoing sources. Environ. Toxicol. Chem. 2012; 31: 2191–2200. © 2012 SETACen_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.subject.otherMultivariate Statisticsen_US
dc.subject.otherDioxinsen_US
dc.subject.otherOrganochlorinesen_US
dc.subject.otherEnvironmental Chemistryen_US
dc.titlePolytopic vector analysis of soil, dust, and serum samples to evaluate exposure sources of PCDD/Fsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumDepartment of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumDepartment of Civil and Environmental Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumInstitute for Social Research, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherLimnoTech, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherLimnoTech, Ann Arbor, Michigan, USA.en_US
dc.identifier.pmid22806962en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93658/1/1942_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93658/2/etc_1942_sm_SupplFig1.pdf
dc.identifier.doi10.1002/etc.1942en_US
dc.identifier.sourceEnvironmental Toxicology and Chemistryen_US
dc.identifier.citedreferenceThe MathWorks. 2010. MATLAB 2010a. Natick, MA, USA.en_US
dc.identifier.citedreferenceEhrlich R, Wenning RJ, Johnson GW, Su SH, Paustenbach DJ. 1994. A mixing model for polychlorinated dibenzo‐ p ‐dioxins and dibenzofurans in surface sediments from Newark Bay, New Jersey, using polytopic vector analysis. Arch Environ Contam Toxicol 27: 486 – 500.en_US
dc.identifier.citedreferenceHuntley SL, Carlson‐Lynch H, Johnson GW, Paustenbach DJ, Finley BL. 1998. Identification of historical PCDD/F sources in Newark Bay estuary subsurface sediments using polytopic vector analysis and radioisotope dating techniques. Chemosphere 36: 1167 – 1185.en_US
dc.identifier.citedreferenceBarabás N, Adriaens P, Goovaerts P. 2004. Modified polytopic vector analysis to identify and quantify a dioxin dechlorination signature in sediments. 1. Theory. Environ Sci Technol 38: 1813 – 1820.en_US
dc.identifier.citedreferenceBarabás N, Adriaens P, Goovaerts P. 2004. Modified polytopic vector analysis to identify and quantify a dioxin dechlorination signature in sediments. 2. Application to the Passaic River. Environ Sci Technol 38: 1821 – 1827.en_US
dc.identifier.citedreferenceJohnson G. 1997. Application of polytopic vector analysis to environmental geochemistry investigations PhD thesis. University of South Carolina, Columbia, SC, USA.en_US
dc.identifier.citedreferenceJohnson G, Ehrlich R, Full W. 2002. Principal components analysis and receptor models in environmental forensics. In Murphy B, Morrison R, eds, Introduction to Environmental Forensics. Academic, New York, NY, USA, pp 461 – 515.en_US
dc.identifier.citedreferenceMagar VS, Johnson GW, Brenner RC, Quensen JF, Foote EA, Durell G, Ickes JA, Peven‐McCarthy C. 2005. Long‐term recovery of PCB‐contaminated sediments at the Lake Hartwell Superfund site PCB dechlorination. 1. End‐member characterization. Environ Sci Technol 39: 3538 – 3547.en_US
dc.identifier.citedreferenceDeCaprio AP, Johnson GW, Tarbell AM, Carpenter DO, Jeffrey R, Chiarenzelli JR, Morse GS, Santiago‐Rivera AL, Schymura MJ. Akwesasne Task Force on the Environment. 2005. Polychlorinated biphenyl (PCB) exposure assessment by multivariate statistical analysis of serum congener profiles in an adult Native American population. Environ Res 98: 284 – 302.en_US
dc.identifier.citedreferenceHilscherova K, Kannan K, Haruhiko N, Nobuyasu H, Nobuyoshi Y, Bradley PW, McCabe JM, Taylor AB, Giesy JP. 2003. Polychlorinated dibenzo‐ p ‐dioxin and dibenzofuran concentration profiles in sediments and flood‐plain soils of the Tittabawassee River, Michigan. Environ Sci Technol 37: 468 – 474.en_US
dc.identifier.citedreferenceDemond A, Adriaens P, Towey T, Chang S‐C, Hong B, Chen Q, Chang C‐W, Franzblau A, Garabrant DH, Gillespie B, Hedgeman E, Knutson K, Lee S‐Y, Lepkowski J, Olson K, Ward B, Zwica L, Luksemburg W, Maier M. 2008. Statistical comparison of residential soil concentrations of PCDDs, PCDFs, and PCBs from two communities in Michigan. Environ Sci Technol 42: 5441 – 5448.en_US
dc.identifier.citedreferenceAnn Arbor Technical Services. 2006. Remedial investigation work plan: Tittabawassee River and Upper Saginaw River. Ann Arbor Technical Services, MI, USA.en_US
dc.identifier.citedreferenceTowey T, Chang S‐C, Demond A, Wright DW, Barabás N, Franzblau A, Garabrant DH, Gillespie B, Lepkowski J, Luksemburg W, Adriaens P. 2010. Hierarchical cluster analysis of polychlorinated dioxins and furans in Michigan, USA, soils: Evaluation of industrial and background congener profiles. Environ Toxicol Chem 29: 64 – 72.en_US
dc.identifier.citedreferenceGoovaerts P, Trinh H, Demond A, Franzblau A, Garabrant D, Gillespie B, Lepkowski J, Adriaens P. 2008. Geostatistical modeling of the spatial distribution of soil dioxins in the vicinity of an incinerator. 1. Theory and application to Midland, Michigan. Environ Sci Technol 42: 3648 – 3654.en_US
dc.identifier.citedreferenceGarabrant DH, Franzblau A, Lepkowski J, Gillespie B, Adriaens P, Demond A, Ward B, LaDronka K, Hedgeman E, Knutson K, Zwica L, Olson K, Towey T, Chen Q, Hong B. 2009. The University of Michigan Dioxin Exposure Study: Methods for an environmental exposure study of polychlorinated dioxins, furans and biphenyls. Environ Health Perspect 117: 803 – 810.en_US
dc.identifier.citedreferenceVan den Berg M, Birnbaum L, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE. 2006. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin‐like compounds. Toxicol Sci 93: 223 – 241.en_US
dc.identifier.citedreferenceU.S. Environmental Protection Agency. Method 8290 Polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) by high‐resolution gas chromatography/high‐resolution mass spectrometry (HRGC/HRMS). Office of Solid Waste and Emergency Response, Washington, DC.en_US
dc.identifier.citedreferenceU.S. Environmental Protection Agency. Method 1668 revision A: Chlorinated biphenyl congeners in water, soil, sediment, and tissue by high‐resolution gas chromatography/high‐resolution mass spectrometry (HRGC/HRMS). Office of Water, Washington, DC.en_US
dc.identifier.citedreferenceGarabrant DH, Franzblau A, Lepkowski J, Gillespie B, Adriaens P, Demond A, Hedgeman E, Knutson K, Zwica L, Olson K, Towey T, Chen Q, Hong B, Chang C‐W, Lee S‐Y, Ward B, LaDronka K, Luksemburg W, Maier M. 2009. The University of Michigan Dioxin Exposure Study: Predictors of human serum dioxin concentrations in Midland and Saginaw, Michigan. Environ Health Perspect 117: 818 – 824.en_US
dc.identifier.citedreferenceHedgeman E, Chen Q, Hong B, Chang C‐W, Olson K, LaDronka K, Ward B, Adriaens P, Demond A, Gillespie B, Lepkowski J, Franzblau A, Garabrant D. 2009. The University of Michigan Dioxin Exposure Study: Population survey results and serum concentrations for polychlorinated dioxins, furans, and biphenyls. Environ Health Perspect 117: 811 – 817.en_US
dc.identifier.citedreferenceDemond A, Franzblau A, Garabrant D, Jiang X, Adriaens P, Chen Q, Gillespie B, Hao W, Hong B, Jolliet O, Lepkowski J. 2012. Human exposure from dioxins in soil. Environ Sci Technol 46: 1296 – 1302.en_US
dc.identifier.citedreferenceTowey T, Barabás N, Demond A, Zwica L, Knutson K, Franzblau A, Garabrant D, Adriaens P. 2008. Statistical fingerprinting of PCBs using the subset with dioxin‐like activity. Organohalogen Compounds 70: 1002350.en_US
dc.identifier.citedreferenceMiesch AT. Q‐mode factor analysis of geochemical and petrologic data matrices with constant row sums. Geological Survey Professional Paper 574‐G. U.S. Geological Survey, Denver, CO, USA.en_US
dc.identifier.citedreferenceEvans JC, Ehrlich R, Krantz D, Full W. 1992. A comparison between polytopic vector analysis and empirical orthogonal function analysis for analyzing quasi‐geostrophic potential vorticity. J Geophys Res 97: 2365 – 2378.en_US
dc.identifier.citedreferenceHenry RC. 2000. UNMIX Software, Version 1.8 manual. West Hills, CA, USA.en_US
dc.identifier.citedreferenceJohnson G, Quensen J, Chiarenzelli J, Hamilton M. 2006. Polychlorinated biphenyls. In Murphy B, Morrison R, eds, Environmental Forensics: Contaminant Specific Guide. Academic, New York, NY, USA, pp 189 – 292.en_US
dc.identifier.citedreferenceDemond A, Towey T, Adriaens P, Zhong X, Knutson K, Chen Q, Hong B, Gillespie B, Franzblau A, Garabrant D, Lepkowski J, Luksemburg W, Maier M. 2010. Relationship between polychlorinated dibenzo‐ p ‐dioxin polychlorinated dibenzofuran and dioxin‐like polychlorinated biphenyl concentrations in vegetation and soil on residential properties. Environ Toxicol Chem 29: 2660 – 2668.en_US
dc.identifier.citedreferenceMilbrath MO, Wenger Y, Chang C‐W, Emond C, Garabrant D, Gillespie B, Jolliet O. 2009. Apparent half‐lives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast‐feeding. Environ Health Perspect 117: 417 – 425.en_US
dc.identifier.citedreferenceU.S. Environmental Protection Agency. An inventory of sources and environmental releases of dioxin‐like compounds in the United States for the years 1987, 1995, and 2000. EPA/600/P‐3/002F. National Center for Environmental Assessment Office of Research and Development, Washington, DC.en_US
dc.identifier.citedreferenceBaker JI, Hites RA. 2000. Is combustion the major source of polychlorinated dibenzo‐ p ‐dioxins and dibenzofurans to the environment? A mass balance investigation. Environ Sci Technol 34: 2879 – 2891.en_US
dc.identifier.citedreferencePinsky P, Lorber MN. 1998. A model to evaluate past exposure to 2,3,7,8‐TCDD. J Expo Anal Environ Epidemiol 8: 187 – 206.en_US
dc.identifier.citedreferenceAylward LL, Hays SM. 2002. Temporal trends in human TCDD body burden: Decreases over three decades and implications for exposure levels. J Expo Anal Environ Epidemiol 12: 319 – 328.en_US
dc.identifier.citedreferenceLorber M. 2002. A pharmacokinetic model for estimating exposure of Americans to dioxin‐like compounds in the past, present, and future. Sci Total Environ 288: 81 – 95.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.