Show simple item record

Synthesis of Enantiomerically Enriched Imidazolidin‐2‐Ones through Asymmetric Palladium‐Catalyzed Alkene Carboamination Reactions

dc.contributor.authorHopkins, Brett A.en_US
dc.contributor.authorWolfe, John P.en_US
dc.date.accessioned2012-10-02T17:19:58Z
dc.date.available2013-10-18T17:47:30Zen_US
dc.date.issued2012-09-24en_US
dc.identifier.citationHopkins, Brett A.; Wolfe, John P. (2012). "Synthesis of Enantiomerically Enriched Imidazolidin‐2‐Ones through Asymmetric Palladium‐Catalyzed Alkene Carboamination Reactions ." Angewandte Chemie International Edition 51(39): 9886-9890. <http://hdl.handle.net/2027.42/93659>en_US
dc.identifier.issn1433-7851en_US
dc.identifier.issn1521-3773en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93659
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherStereoselectivityen_US
dc.subject.otherPalladiumen_US
dc.subject.otherHeterocyclesen_US
dc.subject.otherAsymmetric Catalysisen_US
dc.subject.otherAsymmetric Synthesisen_US
dc.titleSynthesis of Enantiomerically Enriched Imidazolidin‐2‐Ones through Asymmetric Palladium‐Catalyzed Alkene Carboamination Reactionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109‐1055 (USA)en_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109‐1055 (USA)en_US
dc.identifier.pmid22936415en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93659/1/9886_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93659/2/anie_201205233_sm_miscellaneous_information.pdf
dc.identifier.doi10.1002/anie.201205233en_US
dc.identifier.sourceAngewandte Chemie International Editionen_US
dc.identifier.citedreferenceP. B. White, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 18594 – 18597.en_US
dc.identifier.citedreferenceS. Rousseaux, J. Garcia‐Fortanet, M. A. Del Aguila Sanchez, S. L. Buchwald, J. Am. Chem. Soc. 2011, 133, 9282 – 9285.en_US
dc.identifier.citedreferenceIn contrast to asymmetric reactions of N ‐allyl ureas, transformations of N ‐Boc‐pent‐4‐enylamine derivatives proceed with similar enantioselectivities for both aryl iodide and aryl bromide substrates. See Ref. [7a].en_US
dc.identifier.citedreferenceFor studies on the mechanism of syn ‐migratory insertion of alkenes into PdN bonds, see:en_US
dc.identifier.citedreferenceJ. D. Neukom, N. S. Perch, J. P. Wolfe, J. Am. Chem. Soc. 2010, 132, 6276 – 6277;en_US
dc.identifier.citedreferenceP. S. Hanley, D. Markovic, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 6302 – 6303;en_US
dc.identifier.citedreferenceJ. D. Neukom, N. S. Perch, J. P. Wolfe, Organometallics 2011, 30, 1269 – 1277;en_US
dc.identifier.citedreferenceP. S. Hanley, J. F. Hartwig, J. Am. Chem. Soc. 2011, 133, 15661 – 15673;en_US
dc.identifier.citedreferenceOur estimation of the relative electron‐richness of the N ‐Boc pentenylamine versus the p ‐nitrophenyl urea are based on a comparison of p K a values for N 1, N 1 ‐dimethyl‐ N 2 ‐( p ‐nitrophenyl)urea (p K a =15.9, DMSO) versus N ‐Boc‐benzylamine (p K a =22.9, DMSO); the stronger acid possesses a less electron‐rich nitrogen atom. See:en_US
dc.identifier.citedreferenceJ. P. Cheng, M. Xian, K. Wang, X. Zhu, Z. Yin, P. G. Wang, J. Am. Chem. Soc. 1998, 120, 10266 – 10267;en_US
dc.identifier.citedreferenceT. Mita, J. Chen, M. Sugawara, Y. Sato, Angew. Chem. 2011, 123, 1429 – 1432; Angew. Chem. Int. Ed. 2011, 50, 1393 – 1396.en_US
dc.identifier.citedreferenceThe syn ‐aminopalladation of N ‐aryl‐pent‐4‐enylamines has been shown to be irreversible in Pd/dppf complexes. [16c] Related migratory insertions of ethylene into LPd‐NPh 2 complexes have also been shown to be irreversible. [16b,d] The p K a of diphenylamine (25.0) is comparable to that of N ‐Boc‐benzylamine. See: J. N. Li, L. Liu, Y. Fu, Q. X. Guo, Tetrahedron 2006, 62, 4453 – 4462.en_US
dc.identifier.citedreferenceThe observation that deuterated urea substrate ( Z )‐[D]‐1 f is converted to a 7:1 mixture of diastereomers whereas the analogous deuterated carbamate is transformed with >20:1 d.r. is consistent with relatively fast reductive elimination in the carbamate system as compared to the urea. See:en_US
dc.identifier.citedreferenceRef. [12];en_US
dc.identifier.citedreferenceM. B. Bertrand, J. D. Neukom, J. P. Wolfe, J. Org. Chem. 2008, 73, 8851 – 8860.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceFor a review on the effects of anionic ligands in catalytic asymmetric reactions, see: K. Fagnou, M. Lautens, Angew. Chem. 2002, 114, 26 – 49; Angew. Chem. Int. Ed. 2002, 41, 26 – 47;en_US
dc.identifier.citedreferencefor a review on the effect of anionic ligands on Pd‐catalyzed asymmetric allylation reactions, see: B. M. Trost, T. Zhang, J. D. Sieber, Chem. Sci. 2010, 1, 427 – 440.en_US
dc.identifier.citedreferenceSmall anionic ligands increase the rate of CC bond‐forming reductive elimination from five‐coordinate L 2 Pd(Ar)(Ar 1 ) complexes. However, a small anionic ligand (Cl − ) has been shown to dramatically decrease the rate of CC bond‐forming reductive elimination from four ‐ coordinate anionic L 1 Pd II (aryl)(alkyl) complexes related to 10 and 11. See:en_US
dc.identifier.citedreferenceB. Pudasaini, B. G. Janesko, Organometallics 2011, 30, 4564 – 4571;en_US
dc.identifier.citedreferenceC. Amatore, A. Jutand, G. Le Duc, Chem. Eur. J. 2011, 17, 2492 – 2503.en_US
dc.identifier.citedreferenceFor a review, see: J. F. Hartwig, Inorg. Chem. 2007, 46, 1936 – 1947.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. Dumas, Curr. Opin. Drug Discovery Dev. 2002, 5, 718 – 727;en_US
dc.identifier.citedreferenceE. DeClercq, Biochem. Biophys. Acta. 2002, 1587, 258 – 275;en_US
dc.identifier.citedreferenceW. M. Kazmierski, E. Furfine, Y. Gray‐Nunez, A. Spaltenstein, L. Wright, Bioorg. Med. Chem. Lett. 2004, 14, 5685 – 5687.en_US
dc.identifier.citedreferenceFor other catalytic asymmetric syntheses of imidazolidin‐2‐ones, see:en_US
dc.identifier.citedreferenceH. Du, B. Zhao, W. Yuan, Y. Shi, Org. Lett. 2008, 10, 4231 – 4234;en_US
dc.identifier.citedreferenceH. Du, B. Zhao, Y. Shi, J. Am. Chem. Soc. 2008, 130, 8590 – 8591;en_US
dc.identifier.citedreferenceB. Zhao, H. Du, Y. Shi, J. Org. Chem. 2009, 74, 4411 – 4413;en_US
dc.identifier.citedreferenceB. M. Trost, D. R. Fandrick, J. Am. Chem. Soc. 2003, 125, 11836 – 11837.en_US
dc.identifier.citedreferenceG. Sartori, R. Maggi in Science of Synthesis (Houben‐Weyl Methods of Molecular Transformations) Vol. 18 (Eds.: S. V. Ley, J. G. Knight ), Thieme, Stuttgart, 2005, pp.  665 – 758.en_US
dc.identifier.citedreferenceD. Lucet, T. L. Gall, C. Mioskowski, Angew. Chem. 1998, 110, 2724 – 2772; Angew. Chem. Int. Ed. 1998, 37, 2580 – 2627.en_US
dc.identifier.citedreferenceFor the synthesis of racemic ureas by Pd‐catalyzed alkene carboamination, see:en_US
dc.identifier.citedreferenceJ. A. Fritz, J. S. Nakhla, J. P. Wolfe, Org. Lett. 2006, 8, 2531 – 2534;en_US
dc.identifier.citedreferenceJ. A. Fritz, J. P. Wolfe, Tetrahedron 2008, 64, 6838 – 6852.en_US
dc.identifier.citedreferenceFor recent reviews on Pd‐catalyzed alkene carboamination reactions, see:en_US
dc.identifier.citedreferenceD. M. Schultz, J. P. Wolfe, Synthesis 2012, 351 – 361;en_US
dc.identifier.citedreferenceJ. P. Wolfe, Synlett 2008, 2913 – 2937.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceD. N. Mai, J. P. Wolfe, J. Am. Chem. Soc. 2010, 132, 12157 – 12159;en_US
dc.identifier.citedreferenceT. W. Liwosz, S. R. Chemler, J. Am. Chem. Soc. 2012, 134, 2020 – 2023;en_US
dc.identifier.citedreferenceW. Zeng, S. R. Chemler, J. Am. Chem. Soc. 2007, 129, 12948 – 12949;en_US
dc.identifier.citedreferenceS. R. Chemler, Org. Biomol. Chem. 2009, 7, 3009 – 3019.en_US
dc.identifier.citedreferenceX. X. Guo, J. H. Xie, G. H. Hou, W. J. Shi, L. X. Wang, Q. L. Zhou, Tetrahedron: Asymmetry 2004, 15, 2231 – 2234.en_US
dc.identifier.citedreferenceUse of ( R )‐Siphos‐PE as the ligand led to formation of ( R )‐ 2 b in 25 % ee.en_US
dc.identifier.citedreferenceReplacement of the substrate N ‐methyl group with other substituents such as benzyl or p ‐methoxyphenyl did not lead to improved enantioselectivities.en_US
dc.identifier.citedreferenceA similar effect was observed when substoichiometric amounts (50 mol %) of water or NaOH were added. However, the highest degree of reproducibility was obtained with 2.0 equiv of added water.en_US
dc.identifier.citedreferenceThe minor diastereomer likely arises through reversible β‐hydride elimination/reinsertion pathways. For further details, see: M. B. Hay, J. P. Wolfe, J. Am. Chem. Soc. 2005, 127, 16468 – 16476. Additional details are also provided in the Supporting Information.en_US
dc.identifier.citedreferenceD. N. Mai, Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 2011.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceR. A. Fernandes, A. Stimac, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 14133 – 14139;en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.