Show simple item record

Cascading trait‐mediated interactions induced by ant pheromones

dc.contributor.authorHsieh, Hsun‐yien_US
dc.contributor.authorLiere, Heidien_US
dc.contributor.authorSoto, Estelí J.en_US
dc.contributor.authorPerfecto, Ivetteen_US
dc.date.accessioned2012-10-02T17:20:04Z
dc.date.available2013-10-18T17:47:30Zen_US
dc.date.issued2012-09en_US
dc.identifier.citationHsieh, Hsun‐yi ; Liere, Heidi; Soto, Estelí J. ; Perfecto, Ivette (2012). "Cascading traitâ mediated interactions induced by ant pheromones." Ecology and Evolution 2(9): 2181-2191. <http://hdl.handle.net/2027.42/93676>en_US
dc.identifier.issn2045-7758en_US
dc.identifier.issn2045-7758en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93676
dc.description.abstractTrait‐mediated indirect interactions ( TMII ) can be as important as density‐mediated indirect interactions. Here, we provide evidence for a novel trait‐mediated cascade (where one TMII affects another TMII ) and demonstrate that the mechanism consists of a predator eavesdropping on chemical signaling. Ants protect scale insects from predation by adult coccinellid beetles – the first TMII . However, parasitic phorid flies reduce ant foraging activity by 50% – the second TMII , providing a window of opportunity for female beetles to oviposit in high‐quality microsites. Beetle larvae are protected from ant predation and benefit from living in patches with high scale densities. We demonstrate that female beetles can detect pheromones released by the ant when attacked by phorids, and that only females, and especially gravid females, are attracted to the ant pheromone. As ants reduce their movement when under attack by phorids, we conclude that phorids facilitate beetle oviposition, thus producing the TMII cascade. We experimentally demonstrate a cascade of trait‐mediated indirect interactions involving two TMII units: (1) an ant–hemipteran mutualism unit, where the ants interfere with the ability of coccinellid predators to attack scale insects, and (2) a phorid fly‐ant‐hemipteran unit where the phorid flies reduce the foraging activity of the ants thus reducing their ability to interfere with the coccinellid predator. Through a series of experiments, we demonstrate that the gravid female coccinellid beetles indeed eavesdrop on the ant pheromone to find a window of opportunity to oviposit and hide their eggs in high‐quality microsites with high densities of their prey. This level of tight connection between a beetle predator and an ant that tends a hemipteran prey is unique in the scientific literature.en_US
dc.publisherCambridge Univ. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherComplex Ecological Networken_US
dc.subject.otherTMIIen_US
dc.subject.otherAlarm Signalingen_US
dc.subject.otherPredator Avoidanceen_US
dc.subject.otherCoffee Agroecosystemen_US
dc.subject.otherAnt–Hemipteran Mutualismen_US
dc.titleCascading trait‐mediated interactions induced by ant pheromonesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23139877en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93676/1/ece3322.pdf
dc.identifier.doi10.1002/ece3.322en_US
dc.identifier.sourceEcology and Evolutionen_US
dc.identifier.citedreferencePorter, S. D., and M. A. Pesquero. 2001. Illustrated key to Pseudacteon decapitating flies (Diptera: Phoridae) that attack Solenopsis saevissima complex fire ants in South America. Florida Entomol. 84: 691 – 699.en_US
dc.identifier.citedreferencePhilpott, S. M. 2005. Trait‐mediated effects of parasitic phorid flies (Diptera: Phoridae) on ant (Hymenoptera: Formicidae) competition and resource access in coffee agro‐ecosystems. Environ. Entomol. 34: 1089 – 1094.en_US
dc.identifier.citedreferencePhilpott, S. M., J. Maldonado, J. Vandermeer, and I. Perfecto. 2004. Taking trophic cascades up a level: behaviorally‐modified effects of phorid flies on ants and ant prey in coffee agroecosystems. Oikos 105: 141 – 147.en_US
dc.identifier.citedreferencePhilpott, S. M., I. Perfecto, J. Vandermeer, and S. Uno. 2009. Spatial scale and density dependence in a host parasitoid system: an arboreal ant, Azteca instabilis, and its Pseudacteon phorid parasitoid. Environ. Entomol. 38: 790 – 796.en_US
dc.identifier.citedreferencePhilpott, S. M., G. L. Pardee, and D. J. Gonthier. 2012. Cryptic biodiversity effects: importance of functional redundancy revealed through addition of food web complexity. Ecology 93: 992 – 1001.en_US
dc.identifier.citedreferencePoelman, E. H., J. J. A. van Loon, and M. Dicke. 2008. Consequences of plant defense for biodiversity at higher trophic levels. Trends Plant Sci. 13: 534 – 541.en_US
dc.identifier.citedreferenceRelyea, R. A. 2003. How prey respond to combined predators: a review and an empirical test. Ecology 84: 1827 – 1839.en_US
dc.identifier.citedreferenceRothley, K. D., O. J. Schmitz, and J. L. Cohon. 1997. Foraging to balance conflicting demands: novel insights from grasshoppers under predation risk. Behav. Ecol. 8: 551 – 559.en_US
dc.identifier.citedreferenceSchmidt‐Entling, M. H., and E. Siegenthaler. 2009. Herbivore release through cascading risk effects. Biol. Lett. 5: 773 – 776.en_US
dc.identifier.citedreferenceSchmitz, O. J., A. P. Beckerman, and K. M. Obrien. 1997. Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78: 1388 – 1399.en_US
dc.identifier.citedreferenceSchmitz, O. J., V. Krivan, and O. Ovadia. 2004. Trophic cascades: the primacy of trait‐mediated indirect interactions. Ecol. Lett. 7: 153 – 163.en_US
dc.identifier.citedreferenceTerborgh, J., and J. A. Estes. 2010. Trohpic cascade: predators, prey, and the changing dynamics of nature. Island Press, Washington, DC.en_US
dc.identifier.citedreferenceUtsumi, S., Y. Ando, and T. Miki. 2010. Linkages among trait‐mediated indirect effects: a new framework for the indirect interaction web. Popul. Ecol. 52: 485 – 497.en_US
dc.identifier.citedreferenceVandermeer, J., and I. Perfecto. 2006. A keystone mutualism drives pattern in a power function. Science 311: 1000 – 1002.en_US
dc.identifier.citedreferenceVandermeer, J., I. Perfecto, and S. M. Philpott. 2008. Clusters of ant colonies and robust criticality in a tropical agroecosystem. Nature 451: 457 – 460.en_US
dc.identifier.citedreferenceVandermeer, J., I. Perfecto, and S. M. Philpott. 2010. Ecological complexity and pest control in organic coffee production: uncovering an autonomous ecosystem service. Bioscience 60: 527 – 537.en_US
dc.identifier.citedreferenceVan Veen, F. J. F., P. D. van Holland, and H. C. J. Goodfray. 2005. Stable coexistence in insect communities due to density‐ and trait‐mediated indirect effects. Ecology 86: 3182 – 3189.en_US
dc.identifier.citedreferenceVan Veen, F. J. F., C. E. Brandon, and H. C. J. Goodfray. 2009. A positive trait‐mediated indirect effect involving the natural enemies of competing herbivores. Oecologia 160: 195 – 205.en_US
dc.identifier.citedreferenceVega, F. E. 2008. The raise of coffee. Sci. Am. 96: 138 – 145.en_US
dc.identifier.citedreferenceVet, L. E. M., and M. Dicke. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37: 141 – 172.en_US
dc.identifier.citedreferenceWerner, E. E., and S. D. Peacor. 2003. A review of trait‐mediated indirect interactions in ecological communities. Ecology 84: 1083 – 1100.en_US
dc.identifier.citedreferenceWilliams, D. J. 1982. The distribution and synonymy of Coccus‐Celatus delotto (Hemiptera, Coccidae) and its importance on coffee in Papua‐New‐Guinea. Bull. Entomol. Res. 72: 107 – 109.en_US
dc.identifier.citedreferenceWood, D. L. 1982. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annu. Rev. Entomol. 27: 411 – 446.en_US
dc.identifier.citedreferenceZimmerman, E. C., and D. E. Hardy. 1948. Insects of Hawaii; a manual of the insects of the Hawaiian islands, including an enumeration of the species and notes on their origin, distribution, hosts, parasites, etc. University of Hawaii Press, Honolulu, HI.en_US
dc.identifier.citedreferenceAbrams, P. A. 1995. Implications of dynamically variable traits for identifying, classifying and measuring direct and indirect effects in ecological communities. Am. Nat. 146: 112 – 134.en_US
dc.identifier.citedreferenceAgrawal, A. A. 2005. Future directions in the study of induced plant responses to herbivory. Entomol. Exp. Appl. 115: 97 – 105.en_US
dc.identifier.citedreferenceAldrich, J. R., A. Khrimian, and M. J. Camp. 2007. Methyl 2,3,6‐decatrienoates attrack stink bugs and tachinid parasitoids. J. Chem. Ecol. 33: 801 – 815.en_US
dc.identifier.citedreferenceAllan, R. A., M. A. Elgar, and R. J. Capon. 1996. Exploitation of an ant chemical alarm signal by the zodariid spider Habronestes bradleyi Walckenaer. Proc. R. Soc. B. 263: 69 – 73.en_US
dc.identifier.citedreferenceBarbasch, T., and M. F. Bernard. 2011. Past and present risk: exposure to predator chemical cues before and after matamorphosis influences juvenile wood frog behavior. Ethology 117: 367 – 373.en_US
dc.identifier.citedreferenceBolker, B., M. Holyoak, V. Krivan, L. Rowe, and O. Schmitz. 2003. Connecting theoretical and empirical studies of trait‐mediated interactions. Ecology 84: 1101 – 1114.en_US
dc.identifier.citedreferenceBrown, B.V., and D. H. Feener Jr. 1991. Behavior and host location cues of Apocephalus paraponerae (Diptera: Phoridae), a parasitoid of the giant tropical ant, Paraponera clavata (Hymenoptera: Formicidae). Biotropica 23: 182 – 187.en_US
dc.identifier.citedreferenceBrown, B. V., and S. M. Philpott. 2012. Pseudacteon parasitoids of Azteca instabilis ants in Southern Mexico (Diptera: Phoridae, Hymenoptera: Formicidae). Psyche 2012:6. Article ID 351232, doi: 10.1155/2012/351232. Available at http://www.hindawi.com/journals/psyche/2012/351232/ (accessed July 5, 2012).en_US
dc.identifier.citedreferenceBuckley, R. C. 1987. Interactions involving plants, homoptera, and ants. Annu. Rev. Ecol. Syst. 18: 111 – 135.en_US
dc.identifier.citedreferenceCardé, R. T., and J. G. Millar. 2004. Advances in insect chemical ecology. Cambridge Univ. Press, Cambridge, U.K.en_US
dc.identifier.citedreferenceChen, L., and H. Y. Fadamiro. 2007. Behavioral and electroantennogram responses of phorid fly Pseudacteon tricuspis (Diptera: Phoridae) to red imported fire ant Solenopsis invicta odor and trail pheromone. J. Insect Behav. 20: 267 – 287.en_US
dc.identifier.citedreferenceClark, R. J., R. R. Jackson, and B. Cutler. 2000. Chemical cues from ants influence predatory behavior in Habrocestum pulex, an ant‐eating jumping spider (Araneae, Salticidae). J. Arachnol. 28: 309 – 318.en_US
dc.identifier.citedreferenceDettner, K., and C. Liepert. 1994. Chemical mimicry and camouflage. Annu. Rev. Entomol. 39: 129 – 154.en_US
dc.identifier.citedreferenceDicke, M., J. J. A. Van Loon, and R. Soler. 2009. Chemical complexity of volatile from plants induced by multiple attack. Nat. Chem. Biol. 5: 317 – 324.en_US
dc.identifier.citedreferenceFatouros, N. E., M. Dicke, R. Mumm, T. Meiners, and M. Hilker. 2008. Foraging behavior of egg parasitoids exploiting chemical information. Behav. Ecol. 19: 677 – 689.en_US
dc.identifier.citedreferenceFeener, D. H., L. F. Jacobs, and O. Schmidt. 1996. Specialized parasitoid attracted to a pheromone of ants. Anim. Behav. 51: 61 – 66.en_US
dc.identifier.citedreferenceFrancis, F., G. Lognay, and E. Haubruge. 2004. Olfactory responses to aphid and host plant volatile releases: (E)β farnesene an effective kairomone for the predator Adalia bipunctata. J. Chem. Ecol. 30: 741 – 755.en_US
dc.identifier.citedreferenceGill, R., J. S. Nakahara, and M. L. Williams. 1977. A review of the genus Coccus Linnaeus in America North of Panama (Homoptera, Coccoidea, Coccidae). Dept. of Food and Agriculture, Division of Plant Industry, Laboratorty Services/Entomology, Sacramento, CA.en_US
dc.identifier.citedreferenceGodeau, J.F., L. Hemptinne, and J. C. Verhaeghe. 2003. Ant trail: a highway for Coccinella magnifica Redtenbacher (Coleoptera: Coccinellidae). Pp. 79 – 83 in A.O. Soares, M.A. Ventura, V. Garcia, and J.‐L. Hemptinne, eds. Proceedings of the 78th international symposium on ecology of aphidophaga: biology, ecology and behaviour of aphidophagous insects. Arquipélago. Life and Marine Sciences. Supplement, Ponta Delgada, Azores.en_US
dc.identifier.citedreferenceGolubski, A. J., and P. A. Abrams. 2011. Modifying modifiers” what happens when interspecific interactions interact. J. Anim. Ecol. 80: 1097 – 1108.en_US
dc.identifier.citedreferenceHairston, N. G., F. E. Smith, and L. B. Slobodkin. 1960. Community structure, population control, and competition. Am. Nat. 94: 421 – 425.en_US
dc.identifier.citedreferenceHölldobler, B., and E. O. Wilson. 1990. The ants. Harvard University Press, Cambridge, MA.en_US
dc.identifier.citedreferenceHsieh, H., and I. Perfecto. 2012. Trait‐mediated indirect effects of phorid flies on ants. Psyche 15: 291 – 300. doi: 10.1155/2012/380474en_US
dc.identifier.citedreferenceKefi, S., E. L. Berlow, E. A. Wieters, S. A. Navarrete, O. L. Petchey, S. A. Wood, et al. 2012. More than a meal…integrating non‐feeding interactions into food webs. Ecol. Lett. 15: 291 – 300.en_US
dc.identifier.citedreferenceKempf, W. W. 1972. A study of some neotropical ants of genus Pheidole Westwood. I. (Hymenoptera: Formicidae). Studia Entomologica 15: 449 – 464.en_US
dc.identifier.citedreferenceKessler, A., and R. Halitschke. 2007. Specificity and complexity: the impact of herbivore‐induced plant responses on arthropod community structure. Curr. Opin. Plant Biol. 10: 409 – 414.en_US
dc.identifier.citedreferenceKratina, P., E. Hammill, and B. R. Anholt. 2010. Stronger inducible defences enhance persistence of intraguild prey. J. Anim. Ecol. 79: 993 – 999.en_US
dc.identifier.citedreferenceLiere, H., and A. Larsen. 2010. Cascading trait‐mediation: disruption of a trait‐mediated mutualism by parasite‐induced behavioral modification. Oikos 119: 1394 – 1400.en_US
dc.identifier.citedreferenceLiere, H., and I. Perfecto. 2008. Cheating on a mutualism: indirect benefits of ant attendance to a coccidophagous coccinellid. Environ. Entomol. 37: 143 – 149.en_US
dc.identifier.citedreferenceLoreau, M. 2010. From populations to ecosystems: theoretical foundations for a new ecological synthesis. Princeton Univ. Press, Princeton, NJ.en_US
dc.identifier.citedreferenceMathis, K. A., and S. M. Philpott. 2012. Current understanding and future prospects of host selection, aceptance, discrimination and regulation of phorid fly parasitoids that attack ants. Psyche 2012:9. Article ID 895424, doi: 10.1155/2012/895424. Available at http://www.hindawi.com/journals/psyche/2012/895424/ (accessed July 5, 2012).en_US
dc.identifier.citedreferenceMathis, K. A., S. M. Philpott, and R. F. Moreira. 2011. Parasite lost: chemical and visual cues used by Pseudacteon in search of Azteca instabilis. J. Insect Biol. 24: 186 – 199.en_US
dc.identifier.citedreferenceMorrison, L. W. 1999. Indirect effects of phorid fly parasitoids on the mechanisms of interspecific competition among ants. Oecologia 121: 113 – 122.en_US
dc.identifier.citedreferenceOde, P. J. 2006. Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 51: 163 – 185.en_US
dc.identifier.citedreferenceOhgushi, T. 2005. Indirect interaction webs: herbivore‐induced effects through trait change in plants. Annu. Rev. Ecol. Syst. 36: 81 – 105.en_US
dc.identifier.citedreferenceOhgushi, T., T. P. Craig, and P. W. Price. 2007. Indirect interaction webs propagated by herbivore‐induced changes in plant traits. Pp. 379 – 410 in T. Ohgushi, T. P. Craig, and P. W. Price, eds. Ecological communities: plant mediation in indirect interaction webs. Cambridge Univ. Press, Cambridge, U.K.en_US
dc.identifier.citedreferenceOliver, T. H., I. Jones, J. M. Cook, and S. R. Leather. 2008. Avoidance responses of an aphidophagous ladybird, Adalia bipunctata, to aphid‐tending ants. Ecol. Entomol. 33: 523 – 528.en_US
dc.identifier.citedreferencePardee, G. L., and S. M. Philpott. 2011. Cascading indirect effects in a coffee agroecosystem: effects of parasitic phorid flies on ants and the coffee berry borer in a high‐shade and low‐shade habitat. Environ. Entomol. 40: 581 – 588.en_US
dc.identifier.citedreferencePerfecto, I., and J. Vandermeer. 2008. Spatial pattern and ecological process in the coffee agroforestry system. Ecology 89: 915 – 920.en_US
dc.identifier.citedreferencePettersson, J., S. Karunaratne, E. Ahmed, and V. Kumar. 1998. The cowpea aphid, Aphis craccivora, host plant odours and pheromones. Entomol. Exp. Appl. 88: 177 – 184.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.