Show simple item record

A Pivotal Role of Lumbar Spinothalamic Cells in the Regulation of Ejaculation via Intraspinal Connections

dc.contributor.authorStaudt, Michael D.en_US
dc.contributor.authorTruitt, William A.en_US
dc.contributor.authorMcKenna, Kevin E.en_US
dc.contributor.authorde Oliveira, Cleusa V.R.en_US
dc.contributor.authorLehman, Michael N.en_US
dc.contributor.authorCoolen, Lique M.en_US
dc.date.accessioned2012-10-02T17:20:07Z
dc.date.available2013-10-18T17:47:30Zen_US
dc.date.issued2012-09en_US
dc.identifier.citationStaudt, Michael D.; Truitt, William A.; McKenna, Kevin E.; de Oliveira, Cleusa V.R.; Lehman, Michael N.; Coolen, Lique M. (2012). "A Pivotal Role of Lumbar Spinothalamic Cells in the Regulation of Ejaculation via Intraspinal Connections." The Journal of Sexual Medicine 9(9). <http://hdl.handle.net/2027.42/93690>en_US
dc.identifier.issn1743-6095en_US
dc.identifier.issn1743-6109en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93690
dc.description.abstractIntroduction.  A population of lumbar spinothalamic cells (LSt cells) has been demonstrated to play a pivotal role in ejaculatory behavior and comprise a critical component of the spinal ejaculation generator. LSt cells are hypothesized to regulate ejaculation via their projections to autonomic and motor neurons in the lumbosacral spinal cord. Aim.  The current study tested the hypothesis that ejaculatory reflexes are dependent on LSt cells via projections within the lumbosacral spinal cord. Methods.  Male rats received intraspinal injections of neurotoxin saporin conjugated to substance P analog, previously shown to selectively lesion LSt cells. Two weeks later, males were anesthetized and spinal cords were transected. Subsequently, males were subjected to ejaculatory reflex paradigms, including stimulation of the dorsal penile nerve (DPN), urethrogenital stimulation or administration of D3 agonist 7‐OH‐DPAT. Electromyographic recordings of the bulbocavernosus muscle (BCM) were analyzed for rhythmic bursting characteristic of the expulsion phase of ejaculation. In addition, a fourth commonly used paradigm for ejaculation and erections in unanesthetized, spinal‐intact male rats was utilized: the ex copula reflex paradigm. Main Outcome Measures.  LSt cell lesions were predicted to prevent rhythmic bursting of BCM following DPN, urethral, or pharmacological stimulation, and emissions in the ex copula paradigm. In contrast, LSt cell lesions were not expected to abolish erectile function as measured in the ex copula paradigm. Results.  LSt cell lesions prevented rhythmic contractions of the BCM induced by any of the ejaculatory reflex paradigms in spinalized rats. However, LSt cell lesions did not affect erectile function nor emissions determined in the ex copula reflex paradigm. Conclusions.  These data demonstrate that LSt cells are essential for ejaculatory, but not erectile reflexes, as previously reported for mating animals. Moreover, LSt cells mediate ejaculation via projections within the spinal cord, presumably to autonomic and motor neurons. Staudt MD, Truitt WA, McKenna KE, de Oliveira CVR, Lehman MN, and Coolen LM. A pivotal role of lumbar spinothalamic cells in the regulation of ejaculation via intraspinal connections. J Sex Med 2012;9:2256–2265.en_US
dc.publisherBlackwell Publishing Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSpinal Ejaculation Generatoren_US
dc.subject.otherCopulationen_US
dc.subject.otherMotor Neuronsen_US
dc.subject.otherEjaculationen_US
dc.subject.otherSpinal Corden_US
dc.subject.otherSexual Behavioren_US
dc.titleA Pivotal Role of Lumbar Spinothalamic Cells in the Regulation of Ejaculation via Intraspinal Connectionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelUrologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Psychology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Anatomy & Cell Biology, The University of Western Ontario, London, Ontario, Canadaen_US
dc.contributor.affiliationotherDepartment of Anatomy & Cell Biology, Indiana University‐Purdue University Indianapolis, Indianapolis, IN, USAen_US
dc.contributor.affiliationotherDepartments of Physiology and Urology, Northwestern University, Chicago, IL, USAen_US
dc.identifier.pmid22189051en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93690/1/j.1743-6109.2011.02574.x.pdf
dc.identifier.doi10.1111/j.1743-6109.2011.02574.xen_US
dc.identifier.sourceThe Journal of Sexual Medicineen_US
dc.identifier.citedreferenceAhlenius S, Larsson K. Effects of the dopamine D3 receptor ligand 7‐OH‐DPAT on male rat ejaculatory behavior. Pharmacol Biochem Behav 1995; 51: 545 – 7.en_US
dc.identifier.citedreferenceYells DP, Hendricks SE, Prendergast MA. Lesions of the nucleus paragigantocellularis: Effects on mating behavior in male rats. Brain Res 1992; 596: 73 – 9.en_US
dc.identifier.citedreferenceHull EM, Du J, Lorrain DS, Matuszewich L. Testosterone, preoptic dopamine, and copulation in male rats. Brain Res Bull 1997; 44: 327 – 33.en_US
dc.identifier.citedreferenceMarkowski VP, Eaton RC, Lumley LA, Moses J, Hull EM. A D1 agonist in the MPOA facilitates copulation in male rats. Pharmacol Biochem Behav 1994; 47: 483 – 6.en_US
dc.identifier.citedreferencePehek EA, Thompson JT, Hull EM. The effects of intracranial administration of the dopamine agonist apomorphine on penile reflexes and seminal emission in the rat. Brain Res 1989; 500: 325 – 32.en_US
dc.identifier.citedreferenceGiuliano F, Pfaus J, Srilatha B, Hedlund P, Hisasue S, Marson L, Wallen K. Experimental models for the study of female and male sexual function. J Sex Med 2010; 7: 2970 – 95.en_US
dc.identifier.citedreferenceChung SK, McVary KT, McKenna KE. Sexual reflexes in male and female rats. Neurosci Lett 1988; 94: 343 – 8.en_US
dc.identifier.citedreferenceMcKenna KE, Chung SK, McVary KT. A model for the study of sexual function in anesthetized male and female rats. Am J Physiol 1991; 261: R1276 – 85.en_US
dc.identifier.citedreferenceRampin O, Gougis S, Giuliano F, Rousseau JP. Spinal Fos labeling and penile erection elicited by stimulation of dorsal nerve of the rat penis. Am J Physiol 1997; 272: R1425 – 31.en_US
dc.identifier.citedreferenceClement P, Bernabe J, Denys P, Alexandre L, Giuliano F. Ejaculation induced by i.c.v. injection of the preferential dopamine D(3) receptor agonist 7‐hydroxy‐2‐(di‐N‐propylamino)tetralin in anesthetized rats. Neuroscience 2007; 145: 605 – 10.en_US
dc.identifier.citedreferenceFerrari F, Giuliani D. Behavioral effects induced by the dopamine D3 agonist 7‐OH‐DPAT in sexually‐active and ‐inactive male rats. Neuropharmacology 1996; 35: 279 – 84.en_US
dc.identifier.citedreferenceBreedlove SM, Arnold AP. Hormone accumulation in a sexually dimorphic motor nucleus of the rat spinal cord. Science 1980; 210: 564 – 6.en_US
dc.identifier.citedreferenceMoses J, Hull EM. A nitric oxide synthesis inhibitor administered into the medial preoptic area increases seminal emissions in an ex copula reflex test. Pharmacol Biochem Behav 1999; 63: 345 – 8.en_US
dc.identifier.citedreferenceHull EM, Dominguez JM. Sexual behavior in male rodents. Horm Behav 2007; 52: 45 – 55.en_US
dc.identifier.citedreferenceLenz KM, Graham MD, Parada M, Fleming AS, Sengelaub DR, Monks DA. Tactile stimulation during artificial rearing influences adult function and morphology in a sexually dimorphic neuromuscular system. Dev Neurobiol 2008; 68: 542 – 57.en_US
dc.identifier.citedreferenceMas M, Zahradnik MA, Martino V, Davidson JM. Stimulation of spinal serotonergic receptors facilitates seminal emission and suppresses penile erectile reflexes. Brain Res 1985; 342: 128 – 34.en_US
dc.identifier.citedreferenceSakamoto H, Takanami K, Zuloaga DG, Matsuda K, Jordan CL, Breedlove SM, Kawata M. Androgen regulates the sexually dimorphic gastrin‐releasing peptide system in the lumbar spinal cord that mediates male sexual function. Endocrinology 2009; 150: 3672 – 9.en_US
dc.identifier.citedreferenceBorgdorff AJ, Bernabe J, Denys P, Alexandre L, Giuliano F. Ejaculation elicited by microstimulation of lumbar spinothalamic neurons. Eur Urol 2008; 54: 449 – 56.en_US
dc.identifier.citedreferenceMiesel R, Sachs B. The physiology of male sexual behavior. In: Knobil E, Neill J, eds. The physiology of reproduction. 2nd edition. New York: Raven Press, Ltd.; 1994: 3 – 105.en_US
dc.identifier.citedreferenceUeyama T, Arakawa H, Mizuno N. Central distribution of efferent and afferent components of the pudendal nerve in rat. Anat Embryol (Berl) 1987; 177: 37 – 49.en_US
dc.identifier.citedreferenceTang Y, Rampin O, Giuliano F, Ugolini G. Spinal and brain circuits to motoneurons of the bulbospongiosus muscle: Retrograde transneuronal tracing with rabies virus. J Comp Neurol 1999; 414: 167 – 92.en_US
dc.identifier.citedreferenceKitrey ND, Clement P, Bernabe J, Alexandre L, Giuliano F. Microinjection of the preferential dopamine receptor D3 agonist 7‐hydroxy‐N,N‐di‐n‐propylaminotetralin hydrobromide into the hypothalamic medial preoptic area induced ejaculation in anesthetized rats. Neuroscience 2007; 149: 636 – 41.en_US
dc.identifier.citedreferenceLee RL, Smith ER, Mas M, Davidson JM. Effects of intrathecal administration of 8‐OH‐DPAT on genital reflexes and mating behavior in male rats. Physiol Behav 1990; 47: 665 – 9.en_US
dc.identifier.citedreferenceCoolen LM, Peters HJ, Veening JG. Fos immunoreactivity in the rat brain following consummatory elements of sexual behavior: A sex comparison. Brain Res 1996; 738: 67 – 82.en_US
dc.identifier.citedreferenceCoolen LM, Olivier B, Peters HJ, Veening JG. Demonstration of ejaculation‐induced neural activity in the male rat brain using 5‐HT1A agonist 8‐OH‐DPAT. Physiol Behav 1997; 62: 881 – 91.en_US
dc.identifier.citedreferenceFernandez‐Guasti A, Escalante AL, Ahlenius S, Hillegaart V, Larsson K. Stimulation of 5‐HT1A and 5‐HT1B receptors in brain regions and its effects on male rat sexual behaviour. Eur J Pharmacol 1992; 210: 121 – 9.en_US
dc.identifier.citedreferenceHaensel SM, Mos J, Olivier B, Slob AK. Sex behavior of male and female Wistar rats affected by the serotonin agonist 8‐OH‐DPAT. Pharmacol Biochem Behav 1991; 40: 221 – 8.en_US
dc.identifier.citedreferenceCarro‐Juarez M, Rodriguez‐Manzo G. Exhaustion of the coital reflex in spinal male rats is reversed by the serotonergic agonist 8‐OH‐DPAT. Behav Brain Res 2001; 118: 161 – 8.en_US
dc.identifier.citedreferenceHolmes GM, Sachs BD. The ejaculatory reflex in copulating rats: Normal bulbospongiosus activity without apparent urethral stimulation. Neurosci Lett 1991; 125: 195 – 7.en_US
dc.identifier.citedreferenceCukierski MA, Sina JL, Prahalada S, Robertson RT. Effects of seminal vesicle and coagulating gland ablation on fertility in rats. Reprod Toxicol 1991; 5: 347 – 52.en_US
dc.identifier.citedreferenceMcKenna KE. Neural circuitry involved in sexual function. J Spinal Cord Med 2001; 24: 148 – 54.en_US
dc.identifier.citedreferenceSakamoto H. Gastrin‐releasing peptide system in the spinal cord mediates masculine sexual function. Anat Sci Int 2011; 86: 19 – 29.en_US
dc.identifier.citedreferenceCoolen LM, Hull EM. Male sexual function. Physiol Behav 2004; 83: 175 – 6.en_US
dc.identifier.citedreferenceCoolen LM, Allard J, Truitt WA, McKenna KE. Central regulation of ejaculation. Physiol Behav 2004; 83: 203 – 15.en_US
dc.identifier.citedreferenceWatson JW. Mechanism of erection and ejaculation in the bull and ram. Nature 1964; 204: 95 – 6.en_US
dc.identifier.citedreferenceNewman HF, Reiss H, Northup JD. Physical basis of emission, ejaculation, and orgasm in the male. Urology 1982; 19: 341 – 50.en_US
dc.identifier.citedreferenceWang JM, McKenna KE, Lee C. Determination of prostatic secretion in rats: Effect of neurotransmitters and testosterone. Prostate 1991; 18: 289 – 301.en_US
dc.identifier.citedreferenceMcKenna KE. Ejaculation. In: Knobil E, Neill JD, ed. Encyclopedia of reproduction. New York: Academic Press; 1999: 1002 – 8.en_US
dc.identifier.citedreferenceBreedlove SM, Arnold AP. Sexually dimorphic motor nucleus in the rat lumbar spinal cord: Response to adult hormone manipulation, absence in androgen‐insensitive rats. Brain Res 1981; 225: 297 – 307.en_US
dc.identifier.citedreferenceBreedlove SM, Jordan CL, Arnold AP. Neurogenesis of motoneurons in the sexually dimorphic spinal nucleus of the bulbocavernosus in rats. Brain Res 1983; 285: 39 – 43.en_US
dc.identifier.citedreferenceNadelhaft I, McKenna KE. Sexual dimorphism in sympathetic preganglionic neurons of the rat hypogastric nerve. J Comp Neurol 1987; 256: 308 – 15.en_US
dc.identifier.citedreferenceBaron R, Janig W. Afferent and sympathetic neurons projecting into lumbar visceral nerves of the male rat. J Comp Neurol 1991; 314: 429 – 36.en_US
dc.identifier.citedreferenceHancock MB, Peveto CA. A preganglionic autonomic nucleus in the dorsal gray commissure of the lumbar spinal cord of the rat. J Comp Neurol 1979; 183: 65 – 72.en_US
dc.identifier.citedreferenceHancock MB, Peveto CA. Preganglionic neurons in the sacral spinal cord of the rat: An HRP study. Neurosci Lett 1979; 11: 1 – 5.en_US
dc.identifier.citedreferenceMcKenna KE, Nadelhaft I. The organization of the pudendal nerve in the male and female rat. J Comp Neurol 1986; 248: 532 – 49.en_US
dc.identifier.citedreferenceKiehn O, Kjaerulff O. Distribution of central pattern generators for rhythmic motor outputs in the spinal cord of limbed vertebrates. Ann N Y Acad Sci 1998; 860: 110 – 29.en_US
dc.identifier.citedreferenceSachs BD, Garinello LD. Spinal pacemaker controlling sexual reflexes in male rats. Brain Res 1979; 171: 152 – 6.en_US
dc.identifier.citedreferenceHart BL. Sexual reflexes and mating behavior in the male rat. J Comp Physiol Psychol 1968; 65: 453 – 60.en_US
dc.identifier.citedreferenceLodder J, Zeilmaker GH. Effects of pelvic nerve and pudendal nerve transection on mating behavior in the male rat. Physiol Behav 1976; 16: 745 – 51.en_US
dc.identifier.citedreferencePescatori ES, Calabro A, Artibani W, Pagano F, Triban C, Italiano G. Electrical stimulation of the dorsal nerve of the penis evokes reflex tonic erections of the penile body and reflex ejaculatory responses in the spinal rat. J Urol 1993; 149: 627 – 32.en_US
dc.identifier.citedreferenceHerbert J. The role of the dorsal nerves of the penis in the sexual behaviour of the male rhesus monkey. Physiol Behav 1973; 10: 293 – 300.en_US
dc.identifier.citedreferenceWieder JA, Brackett NL, Lynne CM, Green JT, Aballa TC. Anesthetic block of the dorsal penile nerve inhibits vibratory‐induced ejaculation in men with spinal cord injuries. Urology 2000; 55: 915 – 7.en_US
dc.identifier.citedreferenceTruitt WA, Shipley MT, Veening JG, Coolen LM. Activation of a subset of lumbar spinothalamic neurons after copulatory behavior in male but not female rats. J Neurosci 2003; 23: 325 – 31.en_US
dc.identifier.citedreferenceCoolen LM, Veening JG, Wells AB, Shipley MT. Afferent connections of the parvocellular subparafascicular thalamic nucleus in the rat: Evidence for functional subdivisions. J Comp Neurol 2003; 463: 132 – 56.en_US
dc.identifier.citedreferenceJu G, Melander T, Ceccatelli S, Hokfelt T, Frey P. Immunohistochemical evidence for a spinothalamic pathway co‐containing cholecystokinin‐ and galanin‐like immunoreactivities in the rat. Neuroscience 1987; 20: 439 – 56.en_US
dc.identifier.citedreferenceNicholas AP, Zhang X, Hokfelt T. An immunohistochemical investigation of the opioid cell column in lamina X of the male rat lumbosacral spinal cord. Neurosci Lett 1999; 270: 9 – 12.en_US
dc.identifier.citedreferenceSakamoto H, Matsuda K, Zuloaga DG, Hongu H, Wada E, Wada K, Jordan CL, Breedlove SM, Kawata M. Sexually dimorphic gastrin releasing peptide system in the spinal cord controls male reproductive functions. Nat Neurosci 2008; 11: 634 – 6.en_US
dc.identifier.citedreferenceTruitt WA, Coolen LM. Identification of a potential ejaculation generator in the spinal cord. Science 2002; 297: 1566 – 9.en_US
dc.identifier.citedreferenceStaudt MD, de Oliveira CV, Lehman MN, McKenna KE, Coolen LM. Activation of MAP kinase in lumbar spinothalamic cells is required for ejaculation. J Sex Med 2010; 7: 2445 – 57.en_US
dc.identifier.citedreferenceStaudt MD, de Oliveira CV, Lehman MN, McKenna KE, Coolen LM. Activation of NMDA receptors in lumbar spinothalamic cells is required for ejaculation. J Sex Med 2011; 8: 1015 – 26.en_US
dc.identifier.citedreferenceCoolen LM. Neural control of ejaculation. J Comp Neurol 2005; 493: 39 – 45.en_US
dc.identifier.citedreferenceAllard J, Truitt WA, McKenna KE, Coolen LM. Spinal cord control of ejaculation. World J Urol 2005; 23: 119 – 26.en_US
dc.identifier.citedreferenceYoung B, Coolen L, McKenna K. Neural regulation of ejaculation. J Sex Med 2009; 6 (suppl 3 ): 229 – 33.en_US
dc.identifier.citedreferenceSun XQ, Xu C, Leclerc P, Benoit G, Giuliano F, Droupy S. Spinal neurons involved in the control of the seminal vesicles: A transsynaptic labeling study using pseudorabies virus in rats. Neuroscience 2009; 158: 786 – 97.en_US
dc.identifier.citedreferenceNewton BW. Galanin immunoreactivity in rat spinal lamina IX: Emphasis on sexually dimorphic regions. Peptides 1993; 14: 955 – 69.en_US
dc.identifier.citedreferenceMarson L, Platt KB, McKenna KE. Central nervous system innervation of the penis as revealed by the transneuronal transport of pseudorabies virus. Neuroscience 1993; 55: 263 – 80.en_US
dc.identifier.citedreferenceHubscher CH, Johnson RD. Effects of acute and chronic midthoracic spinal cord injury on neural circuits for male sexual function. I. Ascending pathways. J Neurophysiol 1999; 82: 1381 – 9.en_US
dc.identifier.citedreferenceMarson L, List MS, McKenna KE. Lesions of the nucleus paragigantocellularis alter ex copula penile reflexes. Brain Res 1992; 592: 187 – 92.en_US
dc.identifier.citedreferenceMarson L, McKenna KE. A role for 5‐hydroxytryptamine in descending inhibition of spinal sexual reflexes. Exp Brain Res 1992; 88: 313 – 20.en_US
dc.identifier.citedreferenceMurphy AZ, Rizvi TA, Ennis M, Shipley MT. The organization of preoptic‐medullary circuits in the male rat: Evidence for interconnectivity of neural structures involved in reproductive behavior, antinociception and cardiovascular regulation. Neuroscience 1999; 91: 1103 – 16.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.