Show simple item record

Functional Consequences of the Human Leptin Receptor ( LEPR ) Q223R Transversion

dc.contributor.authorStratigopoulos, Georgeen_US
dc.contributor.authorLeDuc, Charles A.en_US
dc.contributor.authorMatsuoka, Naokien_US
dc.contributor.authorGutman, Roeeen_US
dc.contributor.authorRausch, Richarden_US
dc.contributor.authorRobertson, Scott A.en_US
dc.contributor.authorMyers, Martin G.en_US
dc.contributor.authorChung, Wendy K.en_US
dc.contributor.authorChua, Streamson C.en_US
dc.contributor.authorLeibel, Rudolph L.en_US
dc.date.accessioned2012-10-02T17:20:14Z
dc.date.available2012-10-02T17:20:14Z
dc.date.issued2009-01en_US
dc.identifier.citationStratigopoulos, George; LeDuc, Charles A.; Matsuoka, Naoki; Gutman, Roee; Rausch, Richard; Robertson, Scott A.; Myers, Martin G.; Chung, Wendy K.; Chua, Streamson C.; Leibel, Rudolph L. (2009). "Functional Consequences of the Human Leptin Receptor ( LEPR ) Q223R Transversion." Obesity 17(1). <http://hdl.handle.net/2027.42/93715>en_US
dc.identifier.issn1930-7381en_US
dc.identifier.issn1930-739Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93715
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.titleFunctional Consequences of the Human Leptin Receptor ( LEPR ) Q223R Transversionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEndocrinologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumDivision of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherKobe City Medical Center General Hospital, Kobe, Japanen_US
dc.contributor.affiliationotherDiabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USAen_US
dc.contributor.affiliationotherDivision of Molecular Genetics, Department of Pediatrics, Naomi Berrie Diabetes Center, Columbia University, New York, New York, USAen_US
dc.identifier.pmid18997673en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93715/1/oby.2008.489.pdf
dc.identifier.doi10.1038/oby.2008.489en_US
dc.identifier.sourceObesityen_US
dc.identifier.citedreferenceBahrenberg G, Behrmann I, Barthel A et al. Identification of the critical sequence elements in the cytoplasmic domain of leptin receptor isoforms required for Janus kinase/signal transducer and activator of transcription activation by receptor heterodimers. Mol Endocrinol 2002; 16: 859 – 872.en_US
dc.identifier.citedreferenceYiannakouris N, Yannakoulia M, Melistas L et al. The Q223R polymorphism of the leptin receptor gene is significantly associated with obesity and predicts a small percentage of body weight and body composition variability. J Clin Endocrinol Metab 2001; 86: 4434 – 4439.en_US
dc.identifier.citedreferenceMatsuoka N, Ogawa Y, Hosoda K et al. Human leptin receptor gene in obese Japanese subjects: evidence against either obesity‐causing mutations or association of sequence variants with obesity. Diabetologia 1997; 40: 1204 – 1210.en_US
dc.identifier.citedreferenceThompson DB, Ravussin E, Bennett PH, Bogardus C. Structure and sequence variation at the human leptin receptor gene in lean and obese Pima Indians. Hum Mol Genet 1997; 6: 675 – 679.en_US
dc.identifier.citedreferenceGotoda T, Manning BS, Goldstone AP et al. Leptin receptor gene variation and obesity: lack of association in a white British male population. Hum Mol Genet 1997; 6: 869 – 876.en_US
dc.identifier.citedreferenceBanks AS, Davis SM, Bates SH, Myers MG Jr. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 2000; 275: 14563 – 14572.en_US
dc.identifier.citedreferenceBjørbæk C, Uotani S, da Silva B, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 1997; 272: 32686 – 32695.en_US
dc.identifier.citedreferenceKloek C, Haq AK, Dunn SL et al. Regulation of Jak kinases by intracellular leptin receptor sequences. J Biol Chem 2002; 277: 41547 – 41555.en_US
dc.identifier.citedreferenceHeo M, Leibel RL, Fontaine KR et al. A meta‐analytic investigation of linkage and association of common leptin receptor (LEPR) polymorphisms with body mass index and waist circumference. Int J Obes Relat Metab Disord 2002; 26: 640 – 646.en_US
dc.identifier.citedreferenceHaan S, Hemmann U, Hassiepen U et al. Characterization and binding specificity of the monomeric STAT3‐SH2 domain. J Biol Chem 1999; 274: 1342 – 1348.en_US
dc.identifier.citedreferenceHekerman P, Zeidler J, Bamberg‐Lemper S et al. Pleiotropy of leptin receptor signalling is defined by distinct roles of the intracellular tyrosines. FEBS J 2005; 272: 109 – 119.en_US
dc.identifier.citedreferenceBjörnholm M, Münzberg H, Leshan RL et al. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J Clin Invest 2007; 117: 1354 – 1360.en_US
dc.identifier.citedreferencePeelman F, Van Beneden K, Zabeau L et al. Mapping of the leptin binding sites and design of a leptin antagonist. J Biol Chem 2004; 279: 41038 – 41046.en_US
dc.identifier.citedreferenceZabeau L, Defeau D, Iserentant H et al. Leptin receptor activation depends on critical cysteine residues in its fibronectin type III subdomains. J Biol Chem 2005; 280: 22632 – 22640.en_US
dc.identifier.citedreferenceChua SC Jr., Chung WK, Wu‐Peng XS et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 1996; 271: 994 – 996.en_US
dc.identifier.citedreferenceWhite DW, Wang DW, Chua SC Jr. et al. Constitutive and impaired signaling of leptin receptors containing the Gln‐> Pro extracellular domain fatty mutation. Proc Natl Acad Sci USA 1997; 94: 10657 – 10662.en_US
dc.identifier.citedreferenceColeman DL. The influence of genetic background on the expression of mutations at the diabetes (db) locus in the mouse. VI: Hepatic malic enzyme activity is associated with diabetes severity. Metabolism 1992; 41: 1134 – 1136.en_US
dc.identifier.citedreferenceGuo T, Hanson RL, Traurig M et al. TCF7L2 is not a major susceptibility gene for type 2 diabetes in Pima Indians: analysis of 3,501 individuals. Diabetes 2007; 56: 3082 – 3088.en_US
dc.identifier.citedreferenceChagnon YC, Wilmore JH, Borecki IB et al. Associations between the leptin receptor gene and adiposity in middle‐aged Caucasian males from the HERITAGE family study. J Clin Endocrinol Metab 2000; 85: 29 – 34.en_US
dc.identifier.citedreferenceQuinton ND, Lee AJ, Ross RJ, Eastell R, Blakemore AI. A single nucleotide polymorphism (SNP) in the leptin receptor is associated with BMI, fat mass and leptin levels in postmenopausal Caucasian women. Hum Genet 2001; 108: 233 – 236.en_US
dc.identifier.citedreferenceGuizar‐Mendoza JM, Amador‐Licona N, Flores‐Martinez SE et al. Association analysis of the Gln223Arg polymorphism in the human leptin receptor gene, and traits related to obesity in Mexican adolescents. J Hum Hypertens 2005; 19: 341 – 346.en_US
dc.identifier.citedreferenceFairbrother UL, Tanko LB, Walley AJ et al. Leptin receptor genotype at Gln223Arg is associated with body composition, BMD, and vertebral fracture in postmenopausal Danish women. J Bone Miner Res 2007; 22: 544 – 550.en_US
dc.identifier.citedreferenceChagnon YC, Chung WK, Perusse L et al. Linkages and associations between the leptin receptor (LEPR) gene and human body composition in the Quebec Family Study. Int J Obes Relat Metab Disord 1999; 23: 278 – 286.en_US
dc.identifier.citedreferencede Silva AM, Walder KR, Aitman TJ et al. Combination of polymorphisms in OB‐R and the OB gene associated with insulin resistance in Nauruan males. Int J Obes Relat Metab Disord 1999; 23: 816 – 822.en_US
dc.identifier.citedreferenceStefan N, Vozarova B, Del Parigi A et al. The Gln223Arg polymorphism of the leptin receptor in Pima Indians: influence on energy expenditure, physical activity and lipid metabolism. Int J Obes Relat Metab Disord 2002; 26: 1629 – 1632.en_US
dc.identifier.citedreferenceOgawa T, Hirose H, Yamamoto Y et al. Relationships between serum soluble leptin receptor level and serum leptin and adiponectin levels, insulin resistance index, lipid profile, and leptin receptor gene polymorphisms in the Japanese population. Metabolism 2004; 53: 879 – 885.en_US
dc.identifier.citedreferencevan der Vleuten GM, Kluijtmans LA, Hijmans A et al. The Gln223Arg polymorphism in the leptin receptor is associated with familial combined hyperlipidemia. Int J Obes (Lond) 2006; 30: 892 – 898.en_US
dc.identifier.citedreferenceWang TN, Huang MC, Chang WT et al. G‐2548A polymorphism of the leptin gene is correlated with extreme obesity in Taiwanese aborigines. Obesity (Silver Spring) 2006; 14: 183 – 187.en_US
dc.identifier.citedreferenceMergen H, Karaaslan C, Mergen M, Deniz Ozsoy E, Ozata M. LEPR, ADBR3, IRS–1 and 5‐HTT genes polymorphisms do not associate with obesity. Endocr J 2007; 54: 89 – 94.en_US
dc.identifier.citedreferenceMontague CT, Farooqi IS, Whitehead JP et al. Congenital leptin deficiency is associated with severe early‐onset obesity in humans. Nature 1997; 387: 903 – 908.en_US
dc.identifier.citedreferenceFarooqi IS, Matarese G, Lord GM et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 2002; 110: 1093 – 1103.en_US
dc.identifier.citedreferenceGibson WT, Farooqi IS, Moreau M et al. Congenital leptin deficiency due to homozygosity for the Delta133G mutation: report of another case and evaluation of response to four years of leptin therapy. J Clin Endocrinol Metab 2004; 89: 4821 – 4826.en_US
dc.identifier.citedreferenceStrobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998; 18: 213 – 215.en_US
dc.identifier.citedreferenceClément K, Vaisse C, Lahlou N et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998; 392: 398 – 401.en_US
dc.identifier.citedreferenceChung WK, Belfi K, Chua M et al. Heterozygosity for Lep(ob) or Lepr(db) affects body composition and leptin homeostasis in adult mice. Am J Physiol 1998; 274: R985 – R990.en_US
dc.identifier.citedreferenceFarooqi IS, Keogh JM, Kamath S et al. Partial leptin deficiency and human adiposity. Nature 2001; 414: 34 – 35.en_US
dc.identifier.citedreferenceMattevi VS, Zembrzuski VM, Hutz MH. Association analysis of genes involved in the leptin‐signaling pathway with obesity in Brazil. Int J Obes Relat Metab Disord 2002; 26: 1179 – 1185.en_US
dc.identifier.citedreferencevan Rossum CT, Pijl H, Adan RA, Hoebee B, Seidell JC. Polymorphisms in the NPY and AGRP genes and body fatness in Dutch adults. Int J Obes (Lond) 2006; 30: 1522 – 1528.en_US
dc.identifier.citedreferencedel Giudice Miraglia E, Santoro N, Cirillo G et al. Molecular screening of the ghrelin gene in Italian obese children: the Leu72Met variant is associated with an earlier onset of obesity. Int J Obes Relat Metab Disord 2004; 28: 447 – 450.en_US
dc.identifier.citedreferenceYoung EH, Wareham NJ, Farooqi S et al. The V103I polymorphism of the MC4R gene and obesity: population based studies and meta‐analysis of 29 563 individuals. Int J Obes (Lond) 2007; 31: 1437 – 1441.en_US
dc.identifier.citedreferenceChen Y, Snieder H, Wang X et al. Proopiomelanocortin gene variants are associated with serum leptin and body fat in a normal female population. Eur J Hum Genet 2005; 13: 772 – 780.en_US
dc.identifier.citedreferenceBaker M, Gaukrodger N, Mayosi BM et al. Association between common polymorphisms of the proopiomelanocortin gene and body fat distribution: a family study. Diabetes 2005; 54: 2492 – 2496.en_US
dc.identifier.citedreferenceHager J, Clement K, Francke S et al. A polymorphism in the 5′ untranslated region of the human ob gene is associated with low leptin levels. Int J Obes Relat Metab Disord 1998; 22: 200 – 205.en_US
dc.identifier.citedreferenceOhshiro Y, Ueda K, Nishi M et al. A polymorphic marker in the leptin gene associated with Japanese morbid obesity. J Mol Med 2000; 78: 516 – 520.en_US
dc.identifier.citedreferenceChung WK, Power‐Kehoe L, Chua M et al. Exonic and intronic sequence variation in the human leptin receptor gene (LEPR). Diabetes 1997; 46: 1509 – 1511.en_US
dc.identifier.citedreferenceParacchini V, Pedotti P, Taioli E. Genetics of leptin and obesity: a HuGE review. Am J Epidemiol 2005; 162: 101 – 114.en_US
dc.identifier.citedreferenceBjørbæk C, Kahn BB. Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res 2004; 59: 305 – 331.en_US
dc.identifier.citedreferencede Luca C, Kowalski TJ, Zhang Y et al. Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron‐specific LEPR‐B transgenes. J Clin Invest 2005; 115: 3484 – 3493.en_US
dc.identifier.citedreferenceKowalski TJ, Liu SM, Leibel RL, Chua SC Jr. Transgenic complementation of leptin‐receptor deficiency. I. Rescue of the obesity/diabetes phenotype of LEPR‐null mice expressing a LEPR‐B transgene. Diabetes 2001; 50: 425 – 435.en_US
dc.identifier.citedreferenceChua SC Jr., Liu SM, Li Q et al. Transgenic complementation of leptin receptor deficiency. II. Increased leptin receptor transgene dose effects on obesity/diabetes and fertility/lactation in lepr‐db/db mice. Am J Physiol Endocrinol Metab 2004; 286: E384 – E392.en_US
dc.identifier.citedreferenceBates SH, Stearns WH, Schubert M et al. STAT3 signaling is required for leptin regulation of energy balance but not reproduction. Nature 2003; 421: 856 – 859.en_US
dc.identifier.citedreferenceGong Y, Ishida‐Takahashi R, Villanueva EC et al. The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms. J Biol Chem 2007; 282: 31019 – 31027.en_US
dc.identifier.citedreferenceBaumann H, Morella KK, White DW et al. The full‐length leptin receptor has signaling capabilities of interleukin 6‐type cytokine receptors. Proc Natl Acad Sci USA 1996; 93: 8374 – 8378.en_US
dc.identifier.citedreferenceBanks AS, Davis SM, Bates SH, Myers MG Jr. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 2000; 275: 14563 – 14572.en_US
dc.identifier.citedreferenceBjørbaek C, Buchholz RM, Davis SM et al. Divergent roles of SHP‐2 in ERK activation by leptin receptors. J Biol Chem 2001; 276: 4747 – 4755.en_US
dc.identifier.citedreferenceBjørbaek C, Lavery HJ, Bates SH et al. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem 2000; 275: 40649 – 40657.en_US
dc.identifier.citedreferenceBjörnholm M, Münzberg H, Leshan RL et al. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J Clin Invest 2007; 117: 1354 – 1360.en_US
dc.identifier.citedreferenceMinokoshi Y, Alquier T, Furukawa N et al. AMP‐kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004; 428: 569 – 574.en_US
dc.identifier.citedreferenceNiswender KD, Morton GJ, Stearns WH et al. Intracellular signalling. Key enzyme in leptin‐induced anorexia. Nature 2001; 413: 794 – 795.en_US
dc.identifier.citedreferenceCota D, Proulx K, Smith KA et al. Hypothalamic mTOR signaling regulates food intake. Science 2006; 312: 927 – 930.en_US
dc.identifier.citedreferenceXu AW, Kaelin CB, Takeda K et al. PI3K integrates the action of insulin and leptin on hypothalamic neurons. J Clin Invest 2005; 115: 951 – 958.en_US
dc.identifier.citedreferencePlum L, Ma X, Hampel B et al. Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet‐sensitive obesity. J Clin Invest 2006; 116: 1886 – 1901.en_US
dc.identifier.citedreferenceFong TM, Huang RR, Tota MR et al. Localization of leptin binding domain in the leptin receptor. Mol Pharmacol 1998; 53: 234 – 240.en_US
dc.identifier.citedreferenceIserentant H, Peelman F, Defeau D et al. Mapping of the interface between leptin and the leptin receptor CRH2 domain. J Cell Sci 2005; 118: 2519 – 2527.en_US
dc.identifier.citedreferencePeelman F, Iserentant H, De Smet AS et al. Mapping of binding site III in the leptin receptor and modeling of a hexameric leptin.leptin receptor complex. J Biol Chem 2006; 281: 15496 – 15504.en_US
dc.identifier.citedreferenceSilver K, Walston J, Chung WK et al. The Gln223Arg and Lys656Asn polymorphisms in the human leptin receptor do not associate with traits related to obesity. Diabetes 1997; 46: 1898 – 1900.en_US
dc.identifier.citedreferenceMammès O, Aubert R, Betoulle D et al. LEPR gene polymorphisms: associations with overweight, fat mass and response to diet in women. Eur J Clin Invest 2001; 31: 398 – 404.en_US
dc.identifier.citedreferenceEchwald SM, Sørensen TD, Sørensen TI et al. Amino acid variants in the human leptin receptor: lack of association to juvenile onset obesity. Biochem Biophys Res Commun 1997; 233: 248 – 252.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.