Show simple item record

Host‐specific morphologies but no host races in the commensal bivalve N eaeromya rugifera

dc.contributor.authorLi, Jingchunen_US
dc.contributor.authorÓ Foighil, Diarmaiden_US
dc.date.accessioned2012-10-02T17:20:15Z
dc.date.available2013-10-18T17:47:30Zen_US
dc.date.issued2012-09en_US
dc.identifier.citationLi, Jingchun; Ó Foighil, Diarmaid (2012). "Hostâ specific morphologies but no host races in the commensal bivalve N eaeromya rugifera ." Invertebrate Biology 131(3): 197-203. <http://hdl.handle.net/2027.42/93718>en_US
dc.identifier.issn1077-8306en_US
dc.identifier.issn1744-7410en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93718
dc.description.abstractSpeciation by host shift is one of the explicit models of ecological speciation. A prerequisite of this model is the formation of host races (sympatric populations that show host‐specific genetic structuring and phenotypes). Many members of the diverse marine bivalve superfamily G aleommatoidea have obligate commensal relationships with invertebrate hosts. Some species have the ability to occupy multiple host species, thereby providing potential opportunities to test for the formation of host races. The N ortheast P acific galeommatoidean N eaeromya rugifera attaches to two strikingly different hosts: the blue mud shrimp U pogebia pugettensis and the polychaete sea mouse A phrodita spp. We tested if this host difference has resulted in the formation of host races using shell morphologies and genetic markers. We found that populations from different hosts differ significantly in shell morphology. However, based on mitochondrial makers, N . rugifera showed no distinct host‐specific genetic structuring, indicating the existence of a panmictic population. We conclude that the host‐specific morphologies these clams exhibit may reflect ecophenotypic plasticity rather than the existence of host races, but this needs to be corroborated with additional genetic data and larger sample sizes. The pronounced conchological variation within N . rugifera calls for further investigation of its taxonomic relationship with its poorly studied, but morphologically similar, sympatric congener N eaeromya compressa .en_US
dc.publisherUniversity of California Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPhenotypic Plasticityen_US
dc.subject.otherU Pogebiaen_US
dc.subject.otherG Aleommatoideaen_US
dc.subject.otherA Phroditaen_US
dc.titleHost‐specific morphologies but no host races in the commensal bivalve N eaeromya rugiferaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93718/1/ivb268.pdf
dc.identifier.doi10.1111/j.1744-7410.2012.00268.xen_US
dc.identifier.sourceInvertebrate Biologyen_US
dc.identifier.citedreferenceRohlf FJ 2010. TPS Series Software for Morphometric Analysis. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York.en_US
dc.identifier.citedreferenceJespersen Å, Lützen J, & Nielsen C 2004. On three species and two new genera ( Montacutella and Brachionlya ) of galeommatoid bivalves from the irregular sea urchin Brissus latecarinatus with emphasis on their reproduction. Zool. Anz. 243: 3 – 19.en_US
dc.identifier.citedreferenceMikkelsen PM & Bieler R 1989. Biology and comparative anatomy of Divariscintilla yoyo and D. troglodytes, two new species of Galeommatidae (Bivalvia) from stomatopod burrows in eastern Florida. Malacologia 31: 175 – 195.en_US
dc.identifier.citedreferenceMorton B & Valentich‐Scott P 1989. The Hong Kong Galeommatacea (Mollusca: Bivalvia) and their hosts, with descriptions of new species. Asian Mar. Biol. 6: 129 – 160.en_US
dc.identifier.citedreferenceNarchi W 1969. On Pseudopythina Rugifera (Carpenter, 1864) (Bivalvia). Veliger 12: 43 – 52.en_US
dc.identifier.citedreferenceÓ Foighil D 1985. Form, function, and origin of temporary dwarf males in Pseudopythina rugifera (Carpenter, 1864) (Bivalvia: Galeommatacea). Veliger 27: 245 – 252.en_US
dc.identifier.citedreferencePaulay G 2003. Marine bivalvia (Mollusca) of Guam. Micronesica 35–36: 218 – 243.en_US
dc.identifier.citedreferencePeccoud J, Ollivier A, Plantegenest M, & Simon JC 2009. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proc. Natl. Acad. Sci. USA 106: 7495 – 7500.en_US
dc.identifier.citedreferenceR Development Core Team 2011. R: A language and Environment for Statistical Computing. Vienna, Austria.en_US
dc.identifier.citedreferenceReznick DN & Ghalambor CK 2001. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112–113: 183 – 198.en_US
dc.identifier.citedreferenceRohlf FJ & Slice DE 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39: 40 – 59.en_US
dc.identifier.citedreferenceRundle H & Nosil P 2005. Ecological speciation. Ecol. Lett. 8: 336 – 352.en_US
dc.identifier.citedreferenceSato S, Owada M, Haga T, Hong JS, & Yamashita JLH 2011. Genus‐specific commensalism of the galeommatoid bivalve Koreamya arcuata (A. Adams, 1856) associated with lingulid brachiopods. Molluscan Res. 31: 95 – 105.en_US
dc.identifier.citedreferenceSchneider S, & Hochleitner R 2006. Great diversity in small space – a remarkable bivalve association from the Lower Pliocene of Harokopio (SW Peloponnesus, Greece). In: International Congress on Bivalvia (23.07.–27.07.2006) – Scientific Program and Abstracts. Malchus N & Pons JM, eds., pp. 72. Universitat Autònoma de Barcelona, Barcelona, Spain.en_US
dc.identifier.citedreferenceSheets HD 2011. Integrated Morphometrics Package. Department of Physics, Canisius College, Buffalo, New York.en_US
dc.identifier.citedreferenceSimon JC, Carre S, Boutin M, Prunier‐Leterme N, Sabater‐Muñoz B, Latorre A, & Bournoville R 2003. Host–based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proc. R. Soc. Lond. B Biol. Sci. 270: 1703 – 1712.en_US
dc.identifier.citedreferenceStevens PM 1990. A genetic analysis of the pea crabs (Decapoda: Pinnotheridae) of New Zealand. I. Patterns of spatial and host‐associated genetic structuring in Pinnotheres novaezelandiae Filhol. J. Exp. Mar. Biol. Ecol. 141: 195 – 212.en_US
dc.identifier.citedreferenceThompson JD, Higgins DG, & Gibson TJ 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673 – 4680.en_US
dc.identifier.citedreferenceValladares A, Manríquez G, & Suárez‐Isla BA 2010. Shell shape variation in populations of Mytilus chilensis (Hupe 1854) from southern Chile: a geometric morphometric approach. Mar. Biol. 157: 2731 – 2738.en_US
dc.identifier.citedreferenceZelditch ML, Swiderski DL, Sheets HD, & Fink WL 2004. Geometric Morphometrics for Biologists: a Primer. Elsevier Press, New York. 443 pp.en_US
dc.identifier.citedreferenceAnker A, Murina GV, Lira C, Caripe JAV, Palmer AR, & Jeng MS 2005. Macrofauna associated with echiuran burrows: a review with new observations of the innkeeper worm, Ochetostoma erythrogrammon Leuckart and Rüppel, in Venezuela. Zool. Stud. 44: 157 – 190.en_US
dc.identifier.citedreferenceBerlocher SH, & Feder JL 2002. Sympatric speciation in phytophagous insects: moving beyond controversy? Annu. Rev. Entomol. 47: 773 – 815.en_US
dc.identifier.citedreferenceBookstein FL 1997. Landmark methods for forms without landmarks: localizing group differences in outline shape. Med. Image Anal. 1: 225 – 243.en_US
dc.identifier.citedreferenceBoss KJ 1965. Symbiotic erycinacean bivalves. Malacologia 3: 183 – 195.en_US
dc.identifier.citedreferenceBouchet P, Lozouet P, Maestrati P, & Heros V 2002. Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site. Biol. J. Linn. Soc. 75: 421 – 436.en_US
dc.identifier.citedreferenceCarlton JT, ed. 2007. The Light & Smith Manual: Intertidal Invertebrates from Central California to Oregon, 4th Edition. University of California Press, Berkeley, California. 1001 pp.en_US
dc.identifier.citedreferenceClement M, Posada D, & Crandall KA 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657 – 1660.en_US
dc.identifier.citedreferenceCoan EV, & Valentich‐Scott P 2012. Bivalve Seashells of Tropical West America – Marine Bivalve Mollusks from Baja California to Northern Perú. Santa Barbara Museum of Natural History Press, Santa Barbara, California. 1258 pp.en_US
dc.identifier.citedreferenceCoan EV, Valentich‐Scott P, & Bernard FR 2000. Bivalve Seashells of Western North America. Santa Barbara Museum of Natural History Press, Santa Barbara, California. 764 pp.en_US
dc.identifier.citedreferenceDall WH 1899. Synopsis of the recent and tertiary Leptonacea of North America and the West Indies. Proc. U. S. Nat. Mus. 21: 873 – 897.en_US
dc.identifier.citedreferenceDrès M & Mallet J 2002. Host races in plant‐feeding insects and their importance in sympatric speciation. Philos. Trans. R. Soc. Lond. B. 357: 471 – 492.en_US
dc.identifier.citedreferenceDuffy J 1996. Species boundaries, specialization, and the radiation of sponge‐dwelling alpheid shrimp. Biol. J. Linn. Soc. 58: 307 – 324.en_US
dc.identifier.citedreferenceDumbauld B, Chapman J, & Torchin M 2011. Is the collapse of mud shrimp ( Upogebia pugettensis ) populations along the Pacific Coast of North America caused by outbreaks of a previously unknown bopyrid isopod parasite ( Orthione griffenis )? Estuar. Coast. 34: 336 – 350.en_US
dc.identifier.citedreferenceFeder JL, Opp SB, Wlazlo B, Reynolds K, Go W, & Spisak S 1994. Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. Proc. Natl. Acad. Sci. USA 91: 7990 – 7994.en_US
dc.identifier.citedreferenceFolmer O, Black M, Hoeh W, Lutz R, & Vrijenhoek R 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotechnol. 3: 294 – 297.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.