Show simple item record

PAI‐1 promotes the accumulation of exudate macrophages and worsens pulmonary fibrosis following type II alveolar epithelial cell injury

dc.contributor.authorOsterholzer, John Jen_US
dc.contributor.authorChristensen, Paul Jen_US
dc.contributor.authorLama, Vibhaen_US
dc.contributor.authorHorowitz, Jeffrey Cen_US
dc.contributor.authorHattori, Noboruen_US
dc.contributor.authorSubbotina, Natalyaen_US
dc.contributor.authorCunningham, Andrewen_US
dc.contributor.authorLin, Yujingen_US
dc.contributor.authorMurdock, Benjamin Jen_US
dc.contributor.authorMorey, Roger Een_US
dc.contributor.authorOlszewski, Michal Aen_US
dc.contributor.authorLawrence, Daniel Aen_US
dc.contributor.authorSimon, Richard Hen_US
dc.contributor.authorSisson, Thomas Hen_US
dc.date.accessioned2012-10-02T17:20:16Z
dc.date.available2013-11-04T19:53:16Zen_US
dc.date.issued2012-10en_US
dc.identifier.citationOsterholzer, John J; Christensen, Paul J; Lama, Vibha; Horowitz, Jeffrey C; Hattori, Noboru; Subbotina, Natalya; Cunningham, Andrew; Lin, Yujing; Murdock, Benjamin J; Morey, Roger E; Olszewski, Michal A; Lawrence, Daniel A; Simon, Richard H; Sisson, Thomas H (2012). "PAI‐1 promotes the accumulation of exudate macrophages and worsens pulmonary fibrosis following type II alveolar epithelial cell injury ." The Journal of Pathology 228(2): 170-180. <http://hdl.handle.net/2027.42/93723>en_US
dc.identifier.issn0022-3417en_US
dc.identifier.issn1096-9896en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93723
dc.description.abstractFibrotic disorders of the lung are associated with perturbations in the plasminogen activation system. Specifically, plasminogen activator inhibitor‐1 (PAI‐1) expression is increased relative to the plasminogen activators. A direct role for this imbalance in modulating the severity of lung scarring following injury has been substantiated in the bleomycin model of pulmonary fibrosis. However, it remains unclear whether derangements in the plasminogen activation system contribute more generally to the pathogenesis of lung fibrosis beyond bleomycin injury. To answer this question, we employed an alternative model of lung scarring, in which type II alveolar epithelial cells (AECs) are specifically injured by administering diphtheria toxin (DT) to mice genetically engineered to express the human DT receptor (DTR) off the surfactant protein C promoter. This targeted AEC injury results in the diffuse accumulation of interstitial collagen. In the present study, we found that this targeted type II cell insult also increases PAI‐1 expression in the alveolar compartment. We identified AECs and lung macrophages to be sources of PAI‐1 production. To determine whether this elevated PAI‐1 concentration was directly related to the severity of fibrosis, DTR + mice were crossed into a PAI‐1‐deficient background (DTR + : PAI‐1 −/− ). DT administration to DTR + : PAI‐1 −/− animals caused significantly less fibrosis than was measured in DTR + mice with intact PAI‐1 production. PAI‐1 deficiency also abrogated the accumulation of CD11b + exudate macrophages that were found to express PAI‐1 and type‐1 collagen. These observations substantiate the critical function of PAI‐1 in pulmonary fibrosis pathogenesis and provide new insight into a potential mechanism by which this pro‐fibrotic molecule influences collagen accumulation. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.en_US
dc.publisherJohn Wiley & Sons, Ltd.en_US
dc.subject.otherPAI‐1en_US
dc.subject.otherFibrosisen_US
dc.subject.otherMacrophageen_US
dc.subject.otherLungen_US
dc.titlePAI‐1 promotes the accumulation of exudate macrophages and worsens pulmonary fibrosis following type II alveolar epithelial cell injuryen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPathologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan Medical Center, Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, 1150 West Medical Center Drive, 6301 MSRB III, Ann Arbor, MI 48109‐5642, USA.en_US
dc.contributor.affiliationumDivision of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDivision of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherResearch Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Japanen_US
dc.identifier.pmid22262246en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93723/1/3992_ftp.pdf
dc.identifier.doi10.1002/path.3992en_US
dc.identifier.sourceThe Journal of Pathologyen_US
dc.identifier.citedreferenceHuang WT, Vayalil PK, Miyata T, et al. Therapeutic value of small molecule inhibitor to plasminogen activator inhibitor‐1 for lung fibrosis. Am J Respir Cell Mol Biol 2012; 46: 87 – 95.en_US
dc.identifier.citedreferenceWheeler AP, Bernard GR, Thompson BT, et al. Pulmonary artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 2006; 354: 2213 – 2224.en_US
dc.identifier.citedreferenceWiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid‐management strategies in acute lung injury. N Engl J Med 2006; 354: 2564 – 2575.en_US
dc.identifier.citedreferenceFlaherty KR, Thwaite EL, Kazerooni EA, et al. Radiological versus histological diagnosis in UIP and NSIP: survival implications. Thorax 2003; 58: 143 – 148.en_US
dc.identifier.citedreferenceOlson AL, Swigris JJ, Raghu G, et al. Seasonal variation: mortality from pulmonary fibrosis is greatest in the winter. Chest 2009; 136: 16 – 22.en_US
dc.identifier.citedreferenceFrankel SK, Schwarz MI. Update in idiopathic pulmonary fibrosis. Curr Opin Pulm Med 2009; 15: 463 – 469.en_US
dc.identifier.citedreferenceChapman HA, Allen CL, Stone OL. Abnormalities in pathways of alveolar fibrin turnover among patients with interstitial lung disease. Am Rev Respir Dis 1986; 133: 437 – 443.en_US
dc.identifier.citedreferenceIdell S, James KK, Levin EG, et al. Local abnormalities in coagulation and fibrinolytic pathways predispose to alveolar fibrin deposition in the adult respiratory distress syndrome. J Clin Invest 1989; 84: 695 – 705.en_US
dc.identifier.citedreferenceBertozzi P, Astedt B, Zenzius L, et al. Depressed bronchoalveolar urokinase activity in patients with adult respiratory distress syndrome. N Engl J Med 1990; 322: 890 – 897.en_US
dc.identifier.citedreferenceKotani I, Sato A, Hayakawa H, et al. Increased procoagulant and antifibrinolytic activities in the lungs with idiopathic pulmonary fibrosis. Thromb Res 1995; 77: 493 – 504.en_US
dc.identifier.citedreferenceSisson TH, Simon RH. The plasminogen activation system in lung disease. Curr Drug Targets 2007; 8: 1016 – 1029.en_US
dc.identifier.citedreferencePrabhakaran P, Ware LB, White KE, et al. Elevated levels of plasminogen activator inhibitor‐1 in pulmonary edema fluid are associated with mortality in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2003; 285: L20 – 28.en_US
dc.identifier.citedreferenceIdell S, James KK, Gillies C, et al. Abnormalities of pathways of fibrin turnover in lung lavage of rats with oleic acid and bleomycin‐induced lung injury support alveolar fibrin deposition. Am J Pathol 1989; 137: 387 – 389.en_US
dc.identifier.citedreferenceOlman MA, Mackman N, Gladson CL, et al. Changes in procoagulant and fibrinolytic gene expression during bleomycin‐induced lung injury in the mouse. J Clin Invest 1995; 96: 1621 – 1630.en_US
dc.identifier.citedreferenceNishiuma T, Sisson TH, Subbotina N, et al. Localization of plasminogen activator activity within normal and injured lungs by in situ zymography. Am J Respir Cell Mol Biol 2004; 31: 552 – 558.en_US
dc.identifier.citedreferenceEitzman DT, McCoy RD, Zheng X, et al. Bleomycin‐induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor‐1 gene. J Clin Invest 1996; 97: 232 – 237.en_US
dc.identifier.citedreferenceSisson TH, Hattori N, Xu Y, et al. Treatment of bleomycin‐induced pulmonary fibrosis by transfer of urokinase‐type plasminogen activator genes. Hum Gene Ther 1999; 10: 2315 – 2323.en_US
dc.identifier.citedreferenceSisson TH, Hanson KE, Subbotina N, et al. Inducible lung‐specific urokinase expression reduces fibrosis and mortality after lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2002; 283: L1023 – 1032.en_US
dc.identifier.citedreferenceHattori N, Degen JL, Sisson TH, et al. Bleomycin‐induced pulmonary fibrosis in fibrinogen‐null mice. J Clin Invest 2000; 106: 1341 – 1350.en_US
dc.identifier.citedreferenceGunther A, Lubke N, Ermert M, et al. Prevention of bleomycin‐induced lung fibrosis by aerosolization of heparin or urokinase in rabbits. Am J Respir Crit Care Med 2003; 168: 1358 – 1365.en_US
dc.identifier.citedreferenceSenoo T, Hattori N, Tanimoto T, et al. Suppression of plasminogen activator inhibitor‐1 by RNA interference attenuates pulmonary fibrosis. Thorax 2010; 65: 334 – 340.en_US
dc.identifier.citedreferenceSisson TH, Mendez M, Choi K, et al. Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med 2010; 181: 254 – 263.en_US
dc.identifier.citedreferenceKatzenstein AA. Pathogenesis of ‘fibrosis’ in interstitial pneumonia: an electron microscopic study. Human Pathol 1985; 16: 1015 – 1024.en_US
dc.identifier.citedreferenceKasper M, Haroske G. Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis. Histol Histopathol 1996; 11: 463 – 483.en_US
dc.identifier.citedreferenceSelman M, Pardo A. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers. Proc Am Thorac Soc 2006; 3: 364 – 372.en_US
dc.identifier.citedreferenceThomas AQ, Lane K, Phillips J, 3rd, et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am J Respir Crit Care Med 2002; 165: 1322 – 1328.en_US
dc.identifier.citedreferenceMaitra M, Wang Y, Gerard RD, et al. Surfactant protein A2 mutations associated with pulmonary fibrosis lead to protein instability and endoplasmic reticulum stress. J Biol Chem 2010; 285: 22103 – 22113.en_US
dc.identifier.citedreferenceCarmeliet P, Kieckens L, Schoonjans L, et al. Plasminogen activator inhibitor‐1 gene‐deficient mice. I. Generation by homologous recombination and characterization. J Clin Invest 1993; 92: 2746 – 2755.en_US
dc.identifier.citedreferenceLazar MH, Christensen PJ, Du M, et al. Plasminogen activator inhibitor‐1 impairs alveolar epithelial repair by binding to vitronectin. Am J Respir Cell Mol Biol 2004; 31: 672 – 678.en_US
dc.identifier.citedreferenceOsterholzer JJ, Curtis JL, Polak T, et al. CCR2 mediates conventional dendritic cell recruitment and the formation of bronchovascular mononuclear cell infiltrates in the lungs of mice infected with Cryptococcus neoformans. J Immunol 2008; 181: 610 – 620.en_US
dc.identifier.citedreferenceOsterholzer JJ, Chen GH, Olszewski MA, et al. Chemokine receptor 2‐mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection. Am J Pathol 2011; 178: 198 – 211.en_US
dc.identifier.citedreferenceMoore BB, Murray L, Das A, et al. The role of CCL12 in the recruitment of fibrocytes and lung fibrosis. Am J Respir Cell Mol Biol 2006; 35: 175 – 181.en_US
dc.identifier.citedreferenceLin KL, Suzuki Y, Nakano H, et al. CCR2+ monocyte‐derived dendritic cells and exudate macrophages produce influenza‐induced pulmonary immune pathology and mortality. J Immunol 2008; 180: 2562 – 2572.en_US
dc.identifier.citedreferenceTighe RM, Liang J, Liu N, et al. Recruited exudative macrophages selectively produce CXCL10 after noninfectious lung injury. Am J Respir Cell Mol Biol 2011; 45: 781 – 788.en_US
dc.identifier.citedreferenceCourey AJ, Horowitz JC, Kim KK, et al. The vitronectin‐binding function of PAI‐1 exacerbates lung fibrosis in mice. Blood 2011; 118: 2313 – 2321.en_US
dc.identifier.citedreferenceBarazzone C, Belin D, Piguet PF, et al. Plasminogen activator inhibitor‐1 in acute hyperoxic mouse lung injury. J Clin Invest 1996; 98: 2666 – 2673.en_US
dc.identifier.citedreferenceWygrecka M, Markart P, Ruppert C, et al. Cellular origin of pro‐coagulant and (anti)‐fibrinolytic factors in bleomycin‐injured lungs. Eur Respir J 2007; 29: 1105 – 1114.en_US
dc.identifier.citedreferenceSelman M, Pardo A, Richeldi L, et al. Emerging drugs for idiopathic pulmonary fibrosis. Expert Opin Emerg Drugs 2011; 16: 341 – 362.en_US
dc.identifier.citedreferenceAzuma A, Nukiwa T, Tsuboi E, et al. Double‐blind, placebo‐controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2005; 171: 1040 – 1047.en_US
dc.identifier.citedreferenceNoble PW, Albera C, Bradford WZ, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 2011; 377: 1760 – 1769.en_US
dc.identifier.citedreferenceRicheldi L, Costabel U, Selman M, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med 2011; 365: 1079 – 1087.en_US
dc.identifier.citedreferenceVentilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000; 342: 1301 – 1308.en_US
dc.identifier.citedreferenceBrower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end‐expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351: 327 – 336.en_US
dc.identifier.citedreferenceSteinberg KP, Hudson LD, Goodman RB, et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006; 354: 1671 – 1684.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.