Show simple item record

Derivation of screening benchmarks for dietary methylmercury exposure for the common loon ( Gavia immer ): Rationale for use in ecological risk assessment

dc.contributor.authorDepew, David C.en_US
dc.contributor.authorBasu, Niladrien_US
dc.contributor.authorBurgess, Neil M.en_US
dc.contributor.authorCampbell, Linda M.en_US
dc.contributor.authorEvers, David C.en_US
dc.contributor.authorGrasman, Keith A.en_US
dc.contributor.authorScheuhammer, Anton M.en_US
dc.date.accessioned2012-10-02T17:20:27Z
dc.date.available2013-11-04T19:53:15Zen_US
dc.date.issued2012-10en_US
dc.identifier.citationDepew, David C.; Basu, Niladri; Burgess, Neil M.; Campbell, Linda M.; Evers, David C.; Grasman, Keith A.; Scheuhammer, Anton M. (2012). "Derivation of screening benchmarks for dietary methylmercury exposure for the common loon ( Gavia immer ): Rationale for use in ecological risk assessment." Environmental Toxicology and Chemistry 31(10): 2399-2407. <http://hdl.handle.net/2027.42/93756>en_US
dc.identifier.issn0730-7268en_US
dc.identifier.issn1552-8618en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93756
dc.description.abstractThe current understanding of methylmercury (MeHg) toxicity to avian species has improved considerably in recent years and indicates that exposure to environmentally relevant concentrations of MeHg through the diet can adversely affect various aspects of avian health, reproduction, and survival. Because fish‐eating birds are at particular risk for elevated MeHg exposure, the authors surveyed the available primary and secondary literature to summarize the effects of dietary MeHg on the common loon ( Gavia immer ) and to derive ecologically relevant toxic thresholds for dietary exposure to MeHg in fish prey. After considering the available data, the authors propose three screening benchmarks of 0.1, 0.18, and 0.4 µg g −1 wet weight MeHg in prey fish. The lowest benchmark (0.1 µg g −1 wet wt) is the threshold for adverse behavioral impacts in adult loons and is close to the empirically determined no observed adverse effects level for subclinical effects observed in captive loon chicks. The remaining benchmarks (0.18 and 0.4 µg g −1 wet wt) correspond to MeHg levels in prey fish associated with significant reproductive impairment and reproductive failure in wild adult loons. Overall, these benchmarks incorporate recent findings and reviews of MeHg toxicity in aquatic fish‐eating birds and provide the basis for a national ecological risk assessment for Hg and loons in Canada. Environ. Toxicol. Chem. 2012; 31: 2399–2407. © 2012 SETACen_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.subject.otherMercuryen_US
dc.subject.otherBirdsen_US
dc.subject.otherRisk Assessmenten_US
dc.subject.otherToxicityen_US
dc.titleDerivation of screening benchmarks for dietary methylmercury exposure for the common loon ( Gavia immer ): Rationale for use in ecological risk assessmenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Environmental Health Science, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherDepartment of Biology and School of Environmental Studies, Queen's University, Kingston, Ontario, Canadaen_US
dc.contributor.affiliationotherNational Wildlife Research Centre, Environment Canada, Ottawa, Ontario, Canadaen_US
dc.contributor.affiliationotherDepartment of Biology, Calvin College, Grand Rapids, Michigan, USAen_US
dc.contributor.affiliationotherBiodiversity Research Institute, Gorham, Maine, USAen_US
dc.contributor.affiliationotherEcotoxicology and Wildlife Health Division, Environment Canada, Mount Pearl, Newfoundland and Labrador, Canadaen_US
dc.contributor.affiliationotherDepartment of Biology and School of Environmental Studies, Queen's University, Kingston, Ontario, Canadaen_US
dc.identifier.pmid22865698en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93756/1/1971_ftp.pdf
dc.identifier.doi10.1002/etc.1971en_US
dc.identifier.sourceEnvironmental Toxicology and Chemistryen_US
dc.identifier.citedreferenceHeinz GH, Hoffman DJ, Klimstra JD, Stebbins KR, Kondrad SL, Erwin CA. 2009. Species differences in the sensitivity of avian embryos to methylmercury. Arch Environ Contam Toxicol 56: 129 – 138.en_US
dc.identifier.citedreferenceMøller AP, Cassey P. 2004. On the relationship between T‐cell mediated immunity in bird species and the establishment success of introduced populations. J Anim Ecol 73: 1035 – 1042.en_US
dc.identifier.citedreferenceHammerschmidt CR, Wiener JG, Frazier BE, Rada RG. 1999. Methylmercury content of eggs in yellow perch related to maternal exposure in four Wisconsin lakes. Environ Sci Technol 33: 999 – 1003.en_US
dc.identifier.citedreferenceOffice of Pesticide Programs. 1982. Pesticide assessment guidelines. Subdivision E, Hazard evaluation: Wildlife and Aquatic Organisms. EPA 540/9‐82/024. U.S. Environmental Protection Agency, Washington DC.en_US
dc.identifier.citedreferenceSuter GW, Cornaby BW, Hadden CT, Hull RN, Stack M, Zafran FA. 1995. An approach for balancing health and ecological risks at hazardous‐waste sites. Risk Anal 15: 221 – 231.en_US
dc.identifier.citedreferenceCanadian Council of Ministers of the Environment. 1998. A protocol for the derivation of Canadian tissue residue guidelines for the protection of wildlife that consume aquatic biota. Winnipeg, Manitoba, Canadaen_US
dc.identifier.citedreferenceSepulveda MS, Williams GE, Frederick PC, Spalding MG. 1999. Effects of mercury on health and first‐year survival of free‐ranging great egrets ( Ardea albus ) from southern Florida. Arch Environ Contam Toxicol 37: 369 – 376.en_US
dc.identifier.citedreferenceFrank R, Lumsden H, Barr JF, Braun HE. 1983. Residues of organochlorine insecticides, industrial chemicals, and mercury in eggs and in tissues taken from healthy and emaciated common loons, Ontario, Canada, 1968–1980. Arch Environ Contam Toxicol 12: 641 – 653.en_US
dc.identifier.citedreferenceDaoust PY, Conboy G, McBurney S, Burgess N. 1998. Interactive mortality factors in common loons from Maritime Canada. J Wildl Dis 34: 524 – 531.en_US
dc.identifier.citedreferenceFournier F, Karasov WH, Meyer MW, Kenow KP, Hohman WH. 2002. Daily energy expenditures of free‐ranging common loon ( Gavia immer ) chicks. Auk 119: 1121 – 1126.en_US
dc.identifier.citedreferenceSpalding MG, Frederick PC, McGill HC, Bouton SN, McDowell LR. 2000. Methylmercury accumulation in tissues and its effects on growth and appetite in captive great egrets. J Wildl Dis 36: 411 – 422.en_US
dc.identifier.citedreferenceFrederick P, Jayasena N. 2011. Altered pairing behaviour and reproductive success in white ibises exposed to environmentally relevant concentrations of methylmercury. Proc R Soc B Biol Sci 278: 1851 – 1857.en_US
dc.identifier.citedreferenceHoffman DJ, Moore JM. 1979. Teratogenic effects of external egg applications of methyl mercury in the mallard, Anas platyrhynchos. Teratology 20: 453 – 461.en_US
dc.identifier.citedreferenceHeinz G. 1974. Effects of low dietary levels of methylmercury on mallard reproduction. Bull Environ Contam Toxicol 11: 386 – 392.en_US
dc.identifier.citedreferenceHeimberger M, Euler D, Barr JF. 1983. The impact of cottage development on common loon reproductive success in central Ontario. Wilson Bull 95: 431 – 439.en_US
dc.identifier.citedreferenceTonn WM, Magnuson JJ. 1982. Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 63: 1149 – 1166.en_US
dc.identifier.citedreferenceSchindler DW. 1988. Effects of acid‐rain on freshwater ecosystems. Science 239: 149 – 157.en_US
dc.identifier.citedreferenceHerring G, Ackerman JT, Eagles‐Smith CA. 2010. Embryo malposition as a potential mechanism for mercury‐induced hatching failure in bird eggs. Environ Toxicol Chem 29: 1788 – 1794.en_US
dc.identifier.citedreferenceGingras BA, Paszkowski CA. 1999. Breeding patterns of common loons on lakes with three different fish assemblages in north‐central Alberta. Can J Zool 77: 600 – 609.en_US
dc.identifier.citedreferenceWolfe MF, Atkeson T, Bowerman W, Burger J, Evers DC, Murray MW. 2005. Wildlife indicators. In Harris RC, Krabbenhoft DP, Mason RP, Murray MW, Reash R, Saltman T, eds, Ecosystem Responses to Mercury Contamination: Indicators of Change. CRC, Boca Raton, FL, USA, pp 123 – 166.en_US
dc.identifier.citedreferenceHoffman DJ, Ohlendorf HM, Marn CM, Pendleton GW. 1998. Association of mercury and selenium with altered glutathione metabolism and oxidative stress in diving ducks from the San Francisco Bay region, USA. Environ Toxicol Chem 17: 167 – 172.en_US
dc.identifier.citedreferenceHenny CJ, Hill EF, Hoffman DJ, Spalding MG, Grove RA. 2002. Nineteenth century mercury: Hazard to wading birds and cormorants of the Carson River, Nevada. Ecotoxicology 11: 213 – 231.en_US
dc.identifier.citedreferenceHoffman DJ, Henny CJ, Hill EF, Grove RA, Kaiser JL, Stebbins KR. 2009. Mercury and drought along the lower Carson river, Nevada: III. Effects on blood and organ biochemistry and histopathology of snowy egrets and black‐crowned night‐herons on Lahontan Reservoir, 2002–2006. J Toxicol Environ Health A 72: 1223 – 1241.en_US
dc.identifier.citedreferenceWess J. 2004. Muscarinic acetylcholine receptor knockout mice: Novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44: 423 – 450.en_US
dc.identifier.citedreferenceCheli V, Adrover M, Blanco C, Ferrari C, Cornea A, Pitossi F, Epstein AL, Jerusalinsky D. 2006. Knocking‐down the NMDAR1 subunit in a limited amount of neurons in the rat hippocampus impairs learning. J Neurochem 97: 68 – 73.en_US
dc.identifier.citedreferenceBasu N, Scheuhammer AM, Rouvinen‐Watt K, Grochowina N, Evans RD, O'Brien M, Chan HM. 2007. Decreased N‐methyl‐D‐aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink. Neurotoxicology 28: 587 – 593.en_US
dc.identifier.citedreferenceHoffman DJ, Spalding MG, Frederick PC. 2005. Subchronic effects of methylmercury on plasma and organ biochemistries in great egret nestlings. Environ Toxicol Chem 24: 3078 – 3084.en_US
dc.identifier.citedreferenceSpalding MG, Bjork RD, Powell GVN, Sundlof SF. 1994. Mercury and cause of death in great white herons. J Wildl Manag 58: 735 – 739.en_US
dc.identifier.citedreferenceAckerman JT, Eagles‐Smith CA, Herzog MP. 2011. Bird mercury concentrations change rapidly as chicks age: Toxicological risk is highest at hatching and fledging. Environ Sci Technol 45: 5418 – 5425.en_US
dc.identifier.citedreferenceKamman NC, Burgess NM, Driscoll CT, Simonin HA, Goodale W, Linehan J, Estabrook R, Hutcheson M, Major A, Scheuhammer AM, Scruton DA. 2005. Mercury in freshwater fish of northeast North America–A geographic perspective based on fish tissue monitoring databases. Ecotoxicology 14: 163 – 180.en_US
dc.identifier.citedreferenceWiener JG, Sandheinrich MB, Bhavsar SP, Bohr JR, Evers DC, Monson BA, Schrank CS. 2012. Toxicological significance of mercury in yellow perch in the Laurentian Great Lakes region. Environ Pollut 161: 350 – 357.en_US
dc.identifier.citedreferenceSidor IF, Pokras MA, Major AR, Poppenga RH, Taylor KM, Miconi RM. 2003. Mortality of common loons in New England, 1987 to 2000. J Wildl Dis 39: 306 – 315.en_US
dc.identifier.citedreferenceEvers DC, Williams KA, Meyer MW, Scheuhammer AM, Schoch N, Gilbert AT, Siegel L, Taylor RJ, Poppenga R, Perkins CR. 2011. Spatial gradients of methylmercury for breeding common loons in the Laurentian Great Lakes region. Ecotoxicology 20: 1609 – 1625.en_US
dc.identifier.citedreferenceBurgess NM, Evers DC, Kaplan JD. 2005. Mercury and other contaminants in common loons breeding in Atlantic Canada. Ecotoxicology 14: 241 – 252.en_US
dc.identifier.citedreferenceScheuhammer AM, Sandheinrich MB. 2008. Recent advances in the toxicology of methylmercury in wildlife. Ecotoxicology 17: 67 – 68.en_US
dc.identifier.citedreferenceFimreite N. 1970. Effects of methyl mercury treated feed on mortality and growth of leghorn cockerels. Can J Anim Sci 50: 387.en_US
dc.identifier.citedreferenceHeinz GH. 1979. Methylmercury: Reproductive and behavioral effects on three generations of mallard ducks. J Wildl Manag 43: 394 – 401.en_US
dc.identifier.citedreferenceFimreite N. 1974. Mercury contamination of aquatic birds in northwestern Ontario. J Wildl Manag 38: 120 – 131.en_US
dc.identifier.citedreferenceBouton SN, Frederick PC, Spalding MG, McGill H. 1999. Effects of chronic, low concentrations of dietary methylmercury on the behavior of juvenile great egrets. Environ Toxicol Chem 18: 1934 – 1939.en_US
dc.identifier.citedreferenceSpalding MG, Frederick PC, McGill HC, Bouton SN, Richey LJ, Schumacher IM, Blackmore CGM, Harrison J. 2000. Histologic, neurologic, and immunologic effects of methylmercury in captive great egrets. J Wildl Dis 36: 423 – 435.en_US
dc.identifier.citedreferenceRutkiewicz J, Nam D, Cooley T, Neumann K, Padilla IB, Route W, Strom S, Basu N. 2011. Mercury exposure and neurochemical impacts in bald eagles across several Great Lakes states. Ecotoxicology 20: 1669 – 1676.en_US
dc.identifier.citedreferenceHoffman DJ, Heinz GH. 1998. Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks. Environ Toxicol Chem 17: 161 – 166.en_US
dc.identifier.citedreferenceEvers DC, Han Y, Driscoll CT, Kamman NC, Goodale MW, Lambert KF, Holsen TM, Chen CY, Clair TA, Butler T. 2007. Biological mercury hotspots in the northeastern United States and southeastern Canada. BioScience 57: 29 – 43.en_US
dc.identifier.citedreferenceScheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW. 2007. Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36: 12 – 19.en_US
dc.identifier.citedreferenceMeyer MW, Evers DC, Daulton T, Braselton WE. 1995. Common loons ( Gavia immer ) nesting on low pH lakes in northern Wisconsin have elevated blood mercury content. Water Air Soil Pollut 80: 871 – 880.en_US
dc.identifier.citedreferenceMeyer MW, Evers DC, Hartigan JJ, Rasmussen PS. 1998. Patterns of common loon ( Gavia immer ) mercury exposure, reproduction, and survival in Wisconsin, USA. Environ Toxicol Chem 17: 184 – 190.en_US
dc.identifier.citedreferenceMeyer MW, Rasmussen PW, Watras CJ, Fevold BM, Kenow KP. 2011. Bi‐phasic trends in mercury concentrations in blood of Wisconsin common loons during 1992–2010. Ecotoxicology 20: 1659 – 1668.en_US
dc.identifier.citedreferenceEvers DC, Kaplan JD, Meyer MW, Reaman PS, Braselton WE, Major A, Burgess N, Scheuhammer AM. 1998. Geographic trend in mercury measured in common loon feathers and blood. Environ Toxicol Chem 17: 173 – 183.en_US
dc.identifier.citedreferenceScheuhammer AM, Atchison CM, Wong AHK, Evers DC. 1998. Mercury exposure in breeding common loons ( Gavia immer ) in central Ontario, Canada. Environ Toxicol Chem 17: 191 – 196.en_US
dc.identifier.citedreferenceScheuhammer AM, Blancher PJ. 1994. Potential risk to common loons ( Gavia immer ) from methylmercury exposure in acidified lakes. Hydrobiol 279/280: 445 – 455.en_US
dc.identifier.citedreferenceBarr JF. 1996. Aspects of common loon ( Gavia immer ) feeding biology on its breeding ground. Hydrobiology 321: 119 – 144.en_US
dc.identifier.citedreferenceEvers DC. 2006. Loons as biosentinels of aquatic integrity. Environ Bioindicators 1: 18 – 21.en_US
dc.identifier.citedreferenceNacci D, Pelletier M, Lake J, Bennett R, Nichols J, Haebler R, Grear J, Kuhn A, Copeland J, Nicholson M, Walters S, Munns WR. 2005. An approach to predict risks to wildlife populations from mercury and other stressors. Ecotoxicology 14: 283 – 293.en_US
dc.identifier.citedreferenceMorrison H. 2011. The Canadian Clean Air Regulatory Agenda Mercury Science Program. Ecotoxicology 20: 1512 – 1519.en_US
dc.identifier.citedreferenceMonson BA. 2009. Trend reversal of mercury concentrations in piscivorous fish from Minnesota lakes: 1982–2006. Environ Sci Technol 43: 1750 – 1755.en_US
dc.identifier.citedreferenceBhavsar SP, Gewurtz SB, McGoldrick DJ, Keir MJ, Backus SM. 2010. Changes in mercury levels in Great Lakes fish between 1970s and 2007. Environ Sci Technol 44: 3273 – 3279.en_US
dc.identifier.citedreferenceWyn B, Kidd KA, Burgess NM, Curry RA, Munkittrick KR. 2010. Increasing mercury in yellow perch at a hotspot in Atlantic Canada, Kejimkujik National Park. Environ Sci Technol 44: 9176 – 9181.en_US
dc.identifier.citedreferenceWolfe MF, Schwarzbach S, Sulaiman RA. 1998. Effects of mercury on wildlife: A comprehensive review. Environ Toxicol Chem 17: 146 – 160.en_US
dc.identifier.citedreferenceShore RF, Pereira G, Walker LA, Thompson DR. 2011. Mercury in nonmarine birds and mammals. In Beyer WN, Meador JP, eds, Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations, 2nd ed. CRC, Boca Raton, FL, USA, pp 609 – 624.en_US
dc.identifier.citedreferenceSuter GW. 2007. Ecological Risk Assessment. CRC, Boca Raton, FL, USA.en_US
dc.identifier.citedreferenceSample BE, Opresko DM, Suter GW. 1996. Toxicological benchmarks for wildlife: 1996 Revision. ES/ER/TM‐86/R3. Health Sciences Research Division, Oak Ridge, TN, USA.en_US
dc.identifier.citedreferenceAllard P, Fairbrother A, Hope BK, Hull RN, Johnson MS, Kapustka L, Mann G, McDonald B, Sample BE. 2010. Recommendations for the development and application of wildlife toxicity reference values. Integr Environ Assess Manag 6: 28 – 37.en_US
dc.identifier.citedreferenceAlvo R, Hussell DJT, Berrill M. 1988. The breeding success of common loons ( Gavia immer ) in relation to alkalinity and other lake characteristics in Ontario. Can J Zool 66: 746 – 752.en_US
dc.identifier.citedreferenceParker KE. 1988. Common loon reproduction and chick feeding on acidified lakes in the Adirondack Park, New York. Can J Zool 66: 804 – 810.en_US
dc.identifier.citedreferenceHunt GL, Hunt MW. 1976. Gull chick survival: the significance of growth rates, timing of breeding and territory size. Ecology 57: 62 – 75.en_US
dc.identifier.citedreferenceRicklefs RE, Bloom G. 1977. Components of avian breeding productivity. Auk 94: 86 – 96.en_US
dc.identifier.citedreferenceLewis SJ, Malecki RA. 1984. Effects of egg oiling on larid productivity and population dynamics. Auk 101: 584 – 592.en_US
dc.identifier.citedreferenceKramer VJ, Etterson MA, Hecker M, Murphy CA, Roesijadi G, Spade DJ, Spromberg JA, Wang M, Ankley GT. 2011. Adverse outcome pathways and ecological risk assessment: bridging to population‐level effects. Environ Toxicol Chem 30: 64 – 76.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.