Show simple item record

Hydrothermal Reaction Kinetics and Pathways of Phenylalanine Alone and in Binary Mixtures

dc.contributor.authorChangi, Shujauddinen_US
dc.contributor.authorZhu, Minghanen_US
dc.contributor.authorSavage, Phillip E.en_US
dc.date.accessioned2012-10-02T17:20:29Z
dc.date.available2013-10-18T17:47:29Zen_US
dc.date.issued2012-09en_US
dc.identifier.citationChangi, Shujauddin; Zhu, Minghan; Savage, Phillip E. (2012). "Hydrothermal Reaction Kinetics and Pathways of Phenylalanine Alone and in Binary Mixtures." ChemSusChem 5(9): 1743-1757. <http://hdl.handle.net/2027.42/93764>en_US
dc.identifier.issn1864-5631en_US
dc.identifier.issn1864-564Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93764
dc.description.abstractWe examined the behavior of phenylalanine in high‐temperature water (HTW) at 220, 250, 280, and 350 °C. Under these conditions, the major product is phenylethylamine. The minor products include styrene and phenylethanol (1‐phenylethanol and 2‐phenylethanol), which appear at higher temperatures and longer batch holding times. Phenylethylamine forms via decarboxylation of phenylalanine, styrene forms via deamination of phenylethylamine, and phenylethanol forms via hydration of styrene. We quantified the molar yields of each product at the four temperatures, and the carbon recovery was between 80–100 % for most cases. Phenylalanine disappearance follows first‐order kinetics with an activation energy of 144±14 kJ mol −1 and a pre‐exponential factor of 10 12.4±1.4  min −1 . A kinetics model based on the proposed pathways was consistent with the experimental data. Effects of five different salts (NaCl, NaNO 3 , Na 2 SO 4 , KCl, K 2 HPO 4 ) and boric acid (H 3 BO 3 ) on phenylalanine behavior at 250 °C have also been elucidated. These additives increase phenylalanine conversion, but decrease the yield of phenylethylamine presumably by promoting formation of high molecular weight compounds. Lastly, binary mixtures of phenylalanine and ethyl oleate have been studied at 350 °C and three different molar concentration ratios. The presence of phenylalanine enhances the conversion of ethyl oleate and molar yields of fatty acid. Higher concentration of ethyl oleate leads to increased deamination of phenylethylamine and hydration of styrene. Amides are also formed due to the interaction of oleic acid/ethyl oleate and phenylethylamine/ammonia and lead to a decrease in the fatty acid yields. Taken collectively, these results provide new insights into the reactions of algae during its hydrothermal liquefaction to produce crude bio‐oil. High Temperature Water: Several products are quantified and a reaction network is developed for phenylalanine alone and in binary mixtures. This study has several implications to bio‐oil production during hydrothermal liquefaction of algae.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherAlgaeen_US
dc.subject.otherHigh Temperature Chemistryen_US
dc.subject.otherKineticsen_US
dc.subject.otherPhenylalanineen_US
dc.subject.otherWater Chemistryen_US
dc.titleHydrothermal Reaction Kinetics and Pathways of Phenylalanine Alone and in Binary Mixturesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumChemical Engineering Department, University of Michigan, Ann Arbor, MI 48109‐2136 (USA), Fax: (+1) 734‐763‐0459en_US
dc.contributor.affiliationumChemical Engineering Department, University of Michigan, Ann Arbor, MI 48109‐2136 (USA), Fax: (+1) 734‐763‐0459en_US
dc.identifier.pmid22927034en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93764/1/1743_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93764/2/cssc_201200146_sm_miscellaneous_information.pdf
dc.identifier.doi10.1002/cssc.201200146en_US
dc.identifier.sourceChemSusChemen_US
dc.identifier.citedreferenceD. Sicinska, D. G. Truhlar, P. Paneth, J. Am. Chem. Soc. 2001, 123, 7683 – 7686.en_US
dc.identifier.citedreferenceV. J. Nowlan, T. T. Tidwell, Acc. Chem. Res. 1977, 10, 252 – 258.en_US
dc.identifier.citedreferenceA. A. Peterson, F. Vogel, R. P. Lachance, M. Fröling, M. J. Antal   Jr., J. W. Tester, Energy Environ. Sci. 2008, 1, 32 – 65.en_US
dc.identifier.citedreferenceA. Kruse, E. Dinjus, Z. Phys. Chem. 2005, 219, 341 – 366.en_US
dc.identifier.citedreferenceA. A. Peterson, R. P. Lachance, J. W. Tester, Ind. Eng. Chem. Res. 2010, 49, 2107 – 2117.en_US
dc.identifier.citedreferenceA. Kruse, A. Krupka, V. Schwarzkopf, C. Gamard, T. Henningsen, Ind. Eng. Chem. Res. 2005, 44, 3013 – 3020.en_US
dc.identifier.citedreferenceA. Kruse, P. Maniam, F. Spieler, Ind. Eng. Chem. Res. 2007, 46, 87 – 96.en_US
dc.identifier.citedreferenceR. D. Bach, C. Canepa, J. Org. Chem. 1996, 61, 6346 – 6353.en_US
dc.identifier.citedreferenceH. Zheng, F. Meng, Struct. Chem. 2009, 20, 943 – 949.en_US
dc.identifier.citedreferenceL. M. Phillips, J. K. Lee, J. Am. Chem. Soc. 2001, 123, 12067 – 12073.en_US
dc.identifier.citedreferenceP. Ruelle, Chem. Phys. 1986, 110, 263 – 274.en_US
dc.identifier.citedreferenceP. Ruelle, J. Am. Chem. Soc. 1987, 109, 1722 – 1725.en_US
dc.identifier.citedreferenceJ. An, L. Bagnell, T. Cablewski, C. R. Strauss, R. W. Trainor, J. Org. Chem. 1997, 62, 2505 – 2511.en_US
dc.identifier.citedreferenceT. Erdmenger, C. R. Becer, R. Hoogenboom, U. S. Schubert, Aust. J. Chem. 2009, 62, 58 – 63.en_US
dc.identifier.citedreferenceJ. D. Campbell, J. A. Allaway, F. Teymour, M. Morbidelli, J. Appl. Polym. Sci. 2004, 94, 890 – 908.en_US
dc.identifier.citedreferenceN. Akiya, P. E. Savage, Ind. Eng. Chem. Res. 2001, 40, 1822 – 1831.en_US
dc.identifier.citedreferenceX. Xu, M. J. Antal, Ind. Eng. Chem. Res. 1997, 36, 23 – 41.en_US
dc.identifier.citedreferenceS. E. Hunter, C. E. Ehrenberger, P. E. Savage, J. Org. Chem. 2006, 71, 6229 – 6239.en_US
dc.identifier.citedreferencehttp://www.mathworks.com/help/toolbox/optim/ug/fmincon.html. 3 rd September 2011, date last accessed.en_US
dc.identifier.citedreferenceK. Mishima, K. Matsuyama, 14 th   International Conference on the Properties of Water and Steam in Kyoto, 350–353.en_US
dc.identifier.citedreferenceS. Slae, R. Shapiro, J. Org. Chem. 1978, 43, 1721 – 1726.en_US
dc.identifier.citedreferenceW. M. Schubert, J. R. Keeffe, J. Am. Chem. Soc. 1972, 94, 559 – 566.en_US
dc.identifier.citedreferenceT. E. Roe, J. T. Scanlan, D. Swern, J. Am. Chem. Soc. 1949, 71, 2215 – 2218.en_US
dc.identifier.citedreferenceM. C. Cesa, S. L. Denman, US Patent No. 5,041,659, 1991.en_US
dc.identifier.citedreferenceP. Duan, L. Dai, P. E. Savage, J. Supercrit. Fluids 2010, 51, 362 – 368.en_US
dc.identifier.citedreferenceP. Valdez, J. G. Dickinson, P. E. Savage, Energy Fuels 2011, 25, 3235 – 3243.en_US
dc.identifier.citedreferenceJ. A. V. Costa, M. G. de Morais, Bioresour. Technol. 2011, 102, 2 – 9.en_US
dc.identifier.citedreferenceT. M. Brown, P. Duan, P. E. Savage, Energy Fuels 2010, 24, 3639 – 3646.en_US
dc.identifier.citedreferenceT. M. Mata, A. A. Martins, N. S. Caetano, Renewable Sustainable Energy Rev. 2010, 14, 217 – 232.en_US
dc.identifier.citedreferenceR. B. Levine, T. Pinnarat, P. E. Savage, Energy Fuels 2010, 24, 5235 – 5243.en_US
dc.identifier.citedreferenceS. M. Heilmann, H. T. Davis, L. R. Jader, P. A. Lefebvre, M. J. Sadowsky, F. J. Schendel, M. G. V. Keitz, K. J. Valentas, Biomass Bioenergy 2010, 34, 875 – 882.en_US
dc.identifier.citedreferenceQ. Guan, P. E. Savage, J. Supercrit. Fluids 2012, 61, 139 – 145.en_US
dc.identifier.citedreferenceP. E. Savage, Chem. Rev. 1999, 99, 603 – 621.en_US
dc.identifier.citedreferenceS. Changi, T. Pinnarat, P. E. Savage, Ind. Eng. Chem. Res. 2011, 50, 3206 – 3211.en_US
dc.identifier.citedreferenceS. Changi, T. Pinnarat, P. E. Savage, Ind. Eng. Chem. Res. 2011, 50, 12471 – 12478.en_US
dc.identifier.citedreferenceS. Changi, T. M. Brown, P. E. Savage, Chem. Eng. J. 2012, 189, 336 – 345.en_US
dc.identifier.citedreferenceE. W. Becker, Biotechnol. Adv. 2007, 25, 207 – 210.en_US
dc.identifier.citedreferenceP. Duan, P. E. Savage, Ind. Eng. Chem. Res. 2011, 50, 52 – 61.en_US
dc.identifier.citedreferenceD. Zhou, L. Zhang, S. Zhang, H. Fu, J. Chen, Energy Fuels 2010, 24, 4054 – 4061.en_US
dc.identifier.citedreferenceY. J. Bae, C. Ryu, J. Jeon, J. Park, D. J. Suh, Y. Suh, D. Chang, Y. Park, Bioresour. Technol. 2011, 102, 3512 – 3520.en_US
dc.identifier.citedreferenceP. Biller, A. B. Ross, Bioresour. Technol. 2011, 102, 215 – 225.en_US
dc.identifier.citedreferenceH. Hwang, T. G. Hartman, C. Ho, J. Agric. Food Chem. 1995, 43, 2917 – 2921.en_US
dc.identifier.citedreferenceJ. R. Vallentyne, Geochim. Cosmochim. Acta 1964, 28, 157 – 188.en_US
dc.identifier.citedreferenceY. Qian, M. H. Engel, S. A. Macko, S. Carpenter, J. Deming, Geochim. Cosmochim. Acta 1993, 57, 3281 – 3293.en_US
dc.identifier.citedreferenceE. Andersson, N. Holm, Orig. Life Evol. Biosph. 2000, 30, 9 – 23.en_US
dc.identifier.citedreferenceJ. L. Bada, S. L. Miller, N. Zhao, Orig. Life Evol. Biosph. 1995, 25, 111 – 118.en_US
dc.identifier.citedreferenceH. C. Helgeson, J. P. Amend, Thermochim. Acta 1994, 245, 89 – 119.en_US
dc.identifier.citedreferenceN. Sato, A. T. Quintain, K. Kang, H. Daimon, K. Fujie, Ind. Eng. Chem. Res. 2004, 43, 3217 – 3222.en_US
dc.identifier.citedreferenceD. Klingler, J. Berg, H. Vogel, J. Supercrit. Fluids 2007, 43, 112 – 119.en_US
dc.identifier.citedreferenceJ. S. Cox, T. M. Seward, Geochim. Cosmochim. Acta 2007, 71, 2264 – 2284.en_US
dc.identifier.citedreferenceW. Abdelmoez, T. Nakahasi, H. Yoshida, Ind. Eng. Chem. Res. 2007, 46, 5286 – 5294.en_US
dc.identifier.citedreferenceW. Abdelmoez, H. Yoshida, T. Nakahasi, Int. J. Chem. React. Eng. 2010, 8, DOI:.en_US
dc.identifier.citedreferenceM. Faisal, N. Sato, A. T. Quintain, H. Daimon, K. Fujie, Int. J. Chem. Kinet. 2007, 39, 175 – 180.en_US
dc.identifier.citedreferenceJ. Li, X. Wang, M. T. Klein, T. B. Brill, Int. J. Chem. Kinet. 2002, 34, 271 – 277.en_US
dc.identifier.citedreferenceJ. Li, T. B. Brill, J. Phys. Chem. A 2003, 107, 5987 – 5992.en_US
dc.identifier.citedreferenceJ. Li, T. B. Brill, Int. J. Chem. Kinet. 2003, 35, 602 – 610.en_US
dc.identifier.citedreferenceY. Ogata, E. Imai, H. Honda, K. Hatori, K. Matsuno, Origins Life Evol. Biosphere 2000, 30, 527 – 537.en_US
dc.identifier.citedreferenceD. K. Alargov, S. Deguchi, K. Tsujii, K. Horikoshi, Origins Life Evol. Biosphere 2002, 32, 1 – 12.en_US
dc.identifier.citedreferenceMd. N. Islam, T. Kaneko, K. Kobayashi, Bull. Chem. Soc. Jpn. 2003, 76, 1171 – 1178.en_US
dc.identifier.citedreferenceT. Otake, T. Taniguchi, Y. Furukawa, F. Kawamura, H. Nakazawa, T. Kakegawa, Astrobiology 2011, 11, 799 – 813.en_US
dc.identifier.citedreferenceK. Sakata, N. Kitadai, T. Yokoyama, Geochim. Cosmochim. Acta 2010, 74, 6841 – 6851.en_US
dc.identifier.citedreferenceA. G. Day, D. Brinkmann, S. Franklin, K. Espina, G. Rudenko, A. Roberst, K. S. Howse, Regul. Toxicol. Pharmacol. 2009, 55, 166 – 180.en_US
dc.identifier.citedreferenceD. Xu, S. Wang, X. Hu, C. Chen, Q. Zhang, Y. Gong, Int. J. Hydrogen Energy 2009, 34, 5357 – 5364.en_US
dc.identifier.citedreferenceO. T. Onsager, M. S. A. Brownrigg, R. Lødeng, Int. J. Hydrogen Energy 1996, 21, 883 – 885.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.