Hydrothermal Reaction Kinetics and Pathways of Phenylalanine Alone and in Binary Mixtures
dc.contributor.author | Changi, Shujauddin | en_US |
dc.contributor.author | Zhu, Minghan | en_US |
dc.contributor.author | Savage, Phillip E. | en_US |
dc.date.accessioned | 2012-10-02T17:20:29Z | |
dc.date.available | 2013-10-18T17:47:29Z | en_US |
dc.date.issued | 2012-09 | en_US |
dc.identifier.citation | Changi, Shujauddin; Zhu, Minghan; Savage, Phillip E. (2012). "Hydrothermal Reaction Kinetics and Pathways of Phenylalanine Alone and in Binary Mixtures." ChemSusChem 5(9): 1743-1757. <http://hdl.handle.net/2027.42/93764> | en_US |
dc.identifier.issn | 1864-5631 | en_US |
dc.identifier.issn | 1864-564X | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/93764 | |
dc.description.abstract | We examined the behavior of phenylalanine in high‐temperature water (HTW) at 220, 250, 280, and 350 °C. Under these conditions, the major product is phenylethylamine. The minor products include styrene and phenylethanol (1‐phenylethanol and 2‐phenylethanol), which appear at higher temperatures and longer batch holding times. Phenylethylamine forms via decarboxylation of phenylalanine, styrene forms via deamination of phenylethylamine, and phenylethanol forms via hydration of styrene. We quantified the molar yields of each product at the four temperatures, and the carbon recovery was between 80–100 % for most cases. Phenylalanine disappearance follows first‐order kinetics with an activation energy of 144±14 kJ mol −1 and a pre‐exponential factor of 10 12.4±1.4 min −1 . A kinetics model based on the proposed pathways was consistent with the experimental data. Effects of five different salts (NaCl, NaNO 3 , Na 2 SO 4 , KCl, K 2 HPO 4 ) and boric acid (H 3 BO 3 ) on phenylalanine behavior at 250 °C have also been elucidated. These additives increase phenylalanine conversion, but decrease the yield of phenylethylamine presumably by promoting formation of high molecular weight compounds. Lastly, binary mixtures of phenylalanine and ethyl oleate have been studied at 350 °C and three different molar concentration ratios. The presence of phenylalanine enhances the conversion of ethyl oleate and molar yields of fatty acid. Higher concentration of ethyl oleate leads to increased deamination of phenylethylamine and hydration of styrene. Amides are also formed due to the interaction of oleic acid/ethyl oleate and phenylethylamine/ammonia and lead to a decrease in the fatty acid yields. Taken collectively, these results provide new insights into the reactions of algae during its hydrothermal liquefaction to produce crude bio‐oil. High Temperature Water: Several products are quantified and a reaction network is developed for phenylalanine alone and in binary mixtures. This study has several implications to bio‐oil production during hydrothermal liquefaction of algae. | en_US |
dc.publisher | WILEY‐VCH Verlag | en_US |
dc.subject.other | Algae | en_US |
dc.subject.other | High Temperature Chemistry | en_US |
dc.subject.other | Kinetics | en_US |
dc.subject.other | Phenylalanine | en_US |
dc.subject.other | Water Chemistry | en_US |
dc.title | Hydrothermal Reaction Kinetics and Pathways of Phenylalanine Alone and in Binary Mixtures | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Natural Resources and Environment | en_US |
dc.subject.hlbsecondlevel | Chemistry | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109‐2136 (USA), Fax: (+1) 734‐763‐0459 | en_US |
dc.contributor.affiliationum | Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109‐2136 (USA), Fax: (+1) 734‐763‐0459 | en_US |
dc.identifier.pmid | 22927034 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/93764/1/1743_ftp.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/93764/2/cssc_201200146_sm_miscellaneous_information.pdf | |
dc.identifier.doi | 10.1002/cssc.201200146 | en_US |
dc.identifier.source | ChemSusChem | en_US |
dc.identifier.citedreference | D. Sicinska, D. G. Truhlar, P. Paneth, J. Am. Chem. Soc. 2001, 123, 7683 – 7686. | en_US |
dc.identifier.citedreference | V. J. Nowlan, T. T. Tidwell, Acc. Chem. Res. 1977, 10, 252 – 258. | en_US |
dc.identifier.citedreference | A. A. Peterson, F. Vogel, R. P. Lachance, M. Fröling, M. J. Antal Jr., J. W. Tester, Energy Environ. Sci. 2008, 1, 32 – 65. | en_US |
dc.identifier.citedreference | A. Kruse, E. Dinjus, Z. Phys. Chem. 2005, 219, 341 – 366. | en_US |
dc.identifier.citedreference | A. A. Peterson, R. P. Lachance, J. W. Tester, Ind. Eng. Chem. Res. 2010, 49, 2107 – 2117. | en_US |
dc.identifier.citedreference | A. Kruse, A. Krupka, V. Schwarzkopf, C. Gamard, T. Henningsen, Ind. Eng. Chem. Res. 2005, 44, 3013 – 3020. | en_US |
dc.identifier.citedreference | A. Kruse, P. Maniam, F. Spieler, Ind. Eng. Chem. Res. 2007, 46, 87 – 96. | en_US |
dc.identifier.citedreference | R. D. Bach, C. Canepa, J. Org. Chem. 1996, 61, 6346 – 6353. | en_US |
dc.identifier.citedreference | H. Zheng, F. Meng, Struct. Chem. 2009, 20, 943 – 949. | en_US |
dc.identifier.citedreference | L. M. Phillips, J. K. Lee, J. Am. Chem. Soc. 2001, 123, 12067 – 12073. | en_US |
dc.identifier.citedreference | P. Ruelle, Chem. Phys. 1986, 110, 263 – 274. | en_US |
dc.identifier.citedreference | P. Ruelle, J. Am. Chem. Soc. 1987, 109, 1722 – 1725. | en_US |
dc.identifier.citedreference | J. An, L. Bagnell, T. Cablewski, C. R. Strauss, R. W. Trainor, J. Org. Chem. 1997, 62, 2505 – 2511. | en_US |
dc.identifier.citedreference | T. Erdmenger, C. R. Becer, R. Hoogenboom, U. S. Schubert, Aust. J. Chem. 2009, 62, 58 – 63. | en_US |
dc.identifier.citedreference | J. D. Campbell, J. A. Allaway, F. Teymour, M. Morbidelli, J. Appl. Polym. Sci. 2004, 94, 890 – 908. | en_US |
dc.identifier.citedreference | N. Akiya, P. E. Savage, Ind. Eng. Chem. Res. 2001, 40, 1822 – 1831. | en_US |
dc.identifier.citedreference | X. Xu, M. J. Antal, Ind. Eng. Chem. Res. 1997, 36, 23 – 41. | en_US |
dc.identifier.citedreference | S. E. Hunter, C. E. Ehrenberger, P. E. Savage, J. Org. Chem. 2006, 71, 6229 – 6239. | en_US |
dc.identifier.citedreference | http://www.mathworks.com/help/toolbox/optim/ug/fmincon.html. 3 rd September 2011, date last accessed. | en_US |
dc.identifier.citedreference | K. Mishima, K. Matsuyama, 14 th International Conference on the Properties of Water and Steam in Kyoto, 350–353. | en_US |
dc.identifier.citedreference | S. Slae, R. Shapiro, J. Org. Chem. 1978, 43, 1721 – 1726. | en_US |
dc.identifier.citedreference | W. M. Schubert, J. R. Keeffe, J. Am. Chem. Soc. 1972, 94, 559 – 566. | en_US |
dc.identifier.citedreference | T. E. Roe, J. T. Scanlan, D. Swern, J. Am. Chem. Soc. 1949, 71, 2215 – 2218. | en_US |
dc.identifier.citedreference | M. C. Cesa, S. L. Denman, US Patent No. 5,041,659, 1991. | en_US |
dc.identifier.citedreference | P. Duan, L. Dai, P. E. Savage, J. Supercrit. Fluids 2010, 51, 362 – 368. | en_US |
dc.identifier.citedreference | P. Valdez, J. G. Dickinson, P. E. Savage, Energy Fuels 2011, 25, 3235 – 3243. | en_US |
dc.identifier.citedreference | J. A. V. Costa, M. G. de Morais, Bioresour. Technol. 2011, 102, 2 – 9. | en_US |
dc.identifier.citedreference | T. M. Brown, P. Duan, P. E. Savage, Energy Fuels 2010, 24, 3639 – 3646. | en_US |
dc.identifier.citedreference | T. M. Mata, A. A. Martins, N. S. Caetano, Renewable Sustainable Energy Rev. 2010, 14, 217 – 232. | en_US |
dc.identifier.citedreference | R. B. Levine, T. Pinnarat, P. E. Savage, Energy Fuels 2010, 24, 5235 – 5243. | en_US |
dc.identifier.citedreference | S. M. Heilmann, H. T. Davis, L. R. Jader, P. A. Lefebvre, M. J. Sadowsky, F. J. Schendel, M. G. V. Keitz, K. J. Valentas, Biomass Bioenergy 2010, 34, 875 – 882. | en_US |
dc.identifier.citedreference | Q. Guan, P. E. Savage, J. Supercrit. Fluids 2012, 61, 139 – 145. | en_US |
dc.identifier.citedreference | P. E. Savage, Chem. Rev. 1999, 99, 603 – 621. | en_US |
dc.identifier.citedreference | S. Changi, T. Pinnarat, P. E. Savage, Ind. Eng. Chem. Res. 2011, 50, 3206 – 3211. | en_US |
dc.identifier.citedreference | S. Changi, T. Pinnarat, P. E. Savage, Ind. Eng. Chem. Res. 2011, 50, 12471 – 12478. | en_US |
dc.identifier.citedreference | S. Changi, T. M. Brown, P. E. Savage, Chem. Eng. J. 2012, 189, 336 – 345. | en_US |
dc.identifier.citedreference | E. W. Becker, Biotechnol. Adv. 2007, 25, 207 – 210. | en_US |
dc.identifier.citedreference | P. Duan, P. E. Savage, Ind. Eng. Chem. Res. 2011, 50, 52 – 61. | en_US |
dc.identifier.citedreference | D. Zhou, L. Zhang, S. Zhang, H. Fu, J. Chen, Energy Fuels 2010, 24, 4054 – 4061. | en_US |
dc.identifier.citedreference | Y. J. Bae, C. Ryu, J. Jeon, J. Park, D. J. Suh, Y. Suh, D. Chang, Y. Park, Bioresour. Technol. 2011, 102, 3512 – 3520. | en_US |
dc.identifier.citedreference | P. Biller, A. B. Ross, Bioresour. Technol. 2011, 102, 215 – 225. | en_US |
dc.identifier.citedreference | H. Hwang, T. G. Hartman, C. Ho, J. Agric. Food Chem. 1995, 43, 2917 – 2921. | en_US |
dc.identifier.citedreference | J. R. Vallentyne, Geochim. Cosmochim. Acta 1964, 28, 157 – 188. | en_US |
dc.identifier.citedreference | Y. Qian, M. H. Engel, S. A. Macko, S. Carpenter, J. Deming, Geochim. Cosmochim. Acta 1993, 57, 3281 – 3293. | en_US |
dc.identifier.citedreference | E. Andersson, N. Holm, Orig. Life Evol. Biosph. 2000, 30, 9 – 23. | en_US |
dc.identifier.citedreference | J. L. Bada, S. L. Miller, N. Zhao, Orig. Life Evol. Biosph. 1995, 25, 111 – 118. | en_US |
dc.identifier.citedreference | H. C. Helgeson, J. P. Amend, Thermochim. Acta 1994, 245, 89 – 119. | en_US |
dc.identifier.citedreference | N. Sato, A. T. Quintain, K. Kang, H. Daimon, K. Fujie, Ind. Eng. Chem. Res. 2004, 43, 3217 – 3222. | en_US |
dc.identifier.citedreference | D. Klingler, J. Berg, H. Vogel, J. Supercrit. Fluids 2007, 43, 112 – 119. | en_US |
dc.identifier.citedreference | J. S. Cox, T. M. Seward, Geochim. Cosmochim. Acta 2007, 71, 2264 – 2284. | en_US |
dc.identifier.citedreference | W. Abdelmoez, T. Nakahasi, H. Yoshida, Ind. Eng. Chem. Res. 2007, 46, 5286 – 5294. | en_US |
dc.identifier.citedreference | W. Abdelmoez, H. Yoshida, T. Nakahasi, Int. J. Chem. React. Eng. 2010, 8, DOI:. | en_US |
dc.identifier.citedreference | M. Faisal, N. Sato, A. T. Quintain, H. Daimon, K. Fujie, Int. J. Chem. Kinet. 2007, 39, 175 – 180. | en_US |
dc.identifier.citedreference | J. Li, X. Wang, M. T. Klein, T. B. Brill, Int. J. Chem. Kinet. 2002, 34, 271 – 277. | en_US |
dc.identifier.citedreference | J. Li, T. B. Brill, J. Phys. Chem. A 2003, 107, 5987 – 5992. | en_US |
dc.identifier.citedreference | J. Li, T. B. Brill, Int. J. Chem. Kinet. 2003, 35, 602 – 610. | en_US |
dc.identifier.citedreference | Y. Ogata, E. Imai, H. Honda, K. Hatori, K. Matsuno, Origins Life Evol. Biosphere 2000, 30, 527 – 537. | en_US |
dc.identifier.citedreference | D. K. Alargov, S. Deguchi, K. Tsujii, K. Horikoshi, Origins Life Evol. Biosphere 2002, 32, 1 – 12. | en_US |
dc.identifier.citedreference | Md. N. Islam, T. Kaneko, K. Kobayashi, Bull. Chem. Soc. Jpn. 2003, 76, 1171 – 1178. | en_US |
dc.identifier.citedreference | T. Otake, T. Taniguchi, Y. Furukawa, F. Kawamura, H. Nakazawa, T. Kakegawa, Astrobiology 2011, 11, 799 – 813. | en_US |
dc.identifier.citedreference | K. Sakata, N. Kitadai, T. Yokoyama, Geochim. Cosmochim. Acta 2010, 74, 6841 – 6851. | en_US |
dc.identifier.citedreference | A. G. Day, D. Brinkmann, S. Franklin, K. Espina, G. Rudenko, A. Roberst, K. S. Howse, Regul. Toxicol. Pharmacol. 2009, 55, 166 – 180. | en_US |
dc.identifier.citedreference | D. Xu, S. Wang, X. Hu, C. Chen, Q. Zhang, Y. Gong, Int. J. Hydrogen Energy 2009, 34, 5357 – 5364. | en_US |
dc.identifier.citedreference | O. T. Onsager, M. S. A. Brownrigg, R. Lødeng, Int. J. Hydrogen Energy 1996, 21, 883 – 885. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.