Show simple item record

Nano‐/microfiber scaffold for tissue engineering: Physical and biological properties

dc.contributor.authorSantana, Bianca Palmaen_US
dc.contributor.authordos Reis Paganotto, Gian Francescoen_US
dc.contributor.authorNedel, Fernandaen_US
dc.contributor.authorPiva, Evandroen_US
dc.contributor.authorde Carvalho, Rodrigo Varellaen_US
dc.contributor.authorNör, Jacques Eduardoen_US
dc.contributor.authorDemarco, Flávio Fernandoen_US
dc.contributor.authorVillarreal Carreño, Neftali Leninen_US
dc.date.accessioned2012-10-02T17:20:30Z
dc.date.available2014-01-07T14:51:07Zen_US
dc.date.issued2012-11en_US
dc.identifier.citationSantana, Bianca Palma; dos Reis Paganotto, Gian Francesco; Nedel, Fernanda; Piva, Evandro; de Carvalho, Rodrigo Varella; Nör, Jacques Eduardo ; Demarco, Flávio Fernando ; Villarreal Carreño, Neftali Lenin (2012). "Nanoâ /microfiber scaffold for tissue engineering: Physical and biological properties ." Journal of Biomedical Materials Research Part A 100A(11): 3051-3058. <http://hdl.handle.net/2027.42/93772>en_US
dc.identifier.issn1549-3296en_US
dc.identifier.issn1552-4965en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93772
dc.description.abstractAlginate hydrogel (AH) has intrinsic physical and biological limitations that hinder its broader application in tissue engineering. We hypothesized that the inclusion of nanofibers in the hydrogel and the use of a biotemplate that mimics nature would enhance the translational potential of alginate hydrogels. In this study, we have shown a method to obtain nano‐/microfibers of titanium (nfTD) and hydroxyapatite (nfHY) using cotton as a biotemplate. These fibers were incorporated in the alginate hydrogel and the mechanical characteristics and biological response to these reinforced materials were evaluated. We observed that these nanofibers resembled the structure of natural collagen and did not mediate cell toxicity. The incorporation of nfTD or nfHY to the AH has not increased the viscosity of the hydrogel. Therefore, this is a feasible method to produce a scaffold with improved physical characteristics, while at the same time generating an enhanced environment for cell adhesion and proliferation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3051–3058, 2012.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherAlginate Hydrogelen_US
dc.subject.otherHydroxyapatiteen_US
dc.subject.otherTitaniumen_US
dc.subject.otherScaffoldsen_US
dc.subject.otherTissue Engineeringen_US
dc.titleNano‐/microfiber scaffold for tissue engineering: Physical and biological propertiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Cardiology, Restorative Sciences, and Endodontics, of the University of Michigan School of Dentistry and the Department of Biomedical Engineering, University of Michigan College of Engineering in Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartment of Operative Dentistry School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazilen_US
dc.contributor.affiliationotherDepartment of Operative Dentistry School of Dentistry, University of Paraná, Paraná, PR, Brazilen_US
dc.contributor.affiliationotherTechnology Development Center, Federal University of Pelotas, Pelotas, RS, Brazilen_US
dc.contributor.affiliationotherDepartment of Operative Dentistry School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazilen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93772/1/34242_ftp.pdf
dc.identifier.doi10.1002/jbm.a.34242en_US
dc.identifier.sourceJournal of Biomedical Materials Research Part Aen_US
dc.identifier.citedreferenceKievit FM, Florczyk SJ, Leung MC, Veiseh O, Park JO, Disis ML, Zhang M. Chitosan‐alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. Biomaterials. 2010; 31: 5903 – 5910.en_US
dc.identifier.citedreferencePopovska N, Streitwieser DA, Xu C, Gerhard H. Paper derived biomorphic porous titanium carbide and titanium oxide ceramics produced by chemical vapor infiltration and reaction (CVI‐R). J Eur Ceram Soc 2005; 25: 829 – 836.en_US
dc.identifier.citedreferenceLagziel‐Simis S, Cohen‐Hadar N, Moscovich‐Dagan H, Wine Y, Freeman A. Protein‐mediated nanoscale biotemplating. Curr Opin Biotechnol 2006; 17: 569 – 573.en_US
dc.identifier.citedreferenceRani VVD, Ramachandran R, Chennazhi KP, Tamura H, Nair SV, Jayakumar R. Fabrication of alginate/nanoTiO2 needle composite scaffolds for tissue engineering applications. Carbohydrate Polymers. 2011; 83: 858 – 864.en_US
dc.identifier.citedreferenceLeite ER, Carreño NLV, Santos LPS, Rangel JH, Soledade LEB, Longo E, et al. Photoluminescence in amorphous TiO 2 ‐PbO systems. Appl Phys A Mater Sci Process 2001; 73: 567 – 569.en_US
dc.identifier.citedreferencePark H, Kang SW, Kim BS, Mooney DJ, Lee KY. Shear‐reversibly crosslinked alginate hydrogels for tissue engineering. Macromol Biosci. 2009; 9: 895 – 901.en_US
dc.identifier.citedreferenceGombotz W, Wee SF. Protein release from alginate matrices. Adv Drug Deliv Rev 1998; 31: 267 – 285.en_US
dc.identifier.citedreferenceLiqiang J, Honggang F, Baiqi W, Dejun W, Baifu X, Shudan L, et al. Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO 2 nanoparticles. Appl Catal B Environ 2006; 62: 282 – 291.en_US
dc.identifier.citedreferenceXie M, Jing L, Zhou J, Lin J, Fu H. Synthesis of nanocrystalline anatase TiO 2 by one‐pot two‐phase separated hydrolysis‐solvothermal processes and its high activity for photocatalytic degradation of rhodamine B. Journal of hazardous materials. 2010; 176: 139 – 145.en_US
dc.identifier.citedreferenceStoch A, Jastrze¡bski W, Dlugon E, Lejda W, Trybalska B, Stoch GJ, et al. Sol‐gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V. J Mol Struct 2005; 744–747: 633 – 640.en_US
dc.identifier.citedreferenceRamanan SR, Venkatesh R. A study of hydroxyapatite fibers prepared via sol‐gel route. Mater Lett 2004; 58: 3320 – 3323.en_US
dc.identifier.citedreferenceJen AC, Wake MC, Mikos AG. Review: Hydrogels for cell immobilization. Biotechnol Bioeng 1996; 50: 357 – 364.en_US
dc.identifier.citedreferenceQian J, Kang Y, Zhang W, Li Z. Fabrication, chemical composition change and phase evolution of biomorphic hydroxyapatite. J Mater Sci Mater Med 2008; 19: 3373 – 3383.en_US
dc.identifier.citedreferenceYu CY, Zhang XC, Zhou FZ, Zhang XZ, Cheng SX, Zhuo RX. Sustained release of antineoplastic drugs from chitosan‐reinforced alginate microparticle drug delivery systems. Int J Pharm 2008; 357: 15 – 21.en_US
dc.identifier.citedreferenceKlöck G, Pfeffermann A, Ryser C, Gröhn P, Kuttler B, Hahn H‐J, et al. Biocompatibility of mannuronic acid‐rich alginates. Biomaterials 1997; 18: 707 – 713.en_US
dc.identifier.citedreferenceAugst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006; 6: 623 – 633.en_US
dc.identifier.citedreferenceLee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001; 101: 1869 – 1879.en_US
dc.identifier.citedreferenceSultzbaugh KJ, Speaker TJ. A method to attach lectins to the surface of spermine alginate microcapsules based on the avidin biotin interaction. J Microencapsulation 1996; 13: 363 – 376.en_US
dc.identifier.citedreferenceLee JW, Park YJ, Lee SJ, Lee SK, Lee KY. The effect of spacer arm length of an adhesion ligand coupled to an alginate gel on the control of fibroblast phenotype. Biomaterials. 2010; 31: 5545 – 5551.en_US
dc.identifier.citedreferenceOxley HR, Corkhill PH, Fitton JH, Tighe BJ. Macroporous hydrogels for biomedical applications: Methodology and morphology. Biomaterials 1993; 14: 1064 – 1072.en_US
dc.identifier.citedreferenceVarma HK, Suresh Babu S. Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method. Ceram Int 2005; 31: 109 – 114.en_US
dc.identifier.citedreferenceLanger R, Vacanti JP. Tissue engineering. Science 1993; 260: 920 – 926.en_US
dc.identifier.citedreferenceTolga Demirtas T, Karakecili AG, Gumusderelioglu M. Hydroxyapatite containing superporous hydrogel composites: Synthesis and in‐vitro characterization. J Mater Sci Mater Med 2008; 19: 729 – 735.en_US
dc.identifier.citedreferenceTan R, Niu X, Gan S, Feng Q. Preparation and characterization of an injectable composite. J Mater Sci Mater Med 2009; 20: 1245 – 1253.en_US
dc.identifier.citedreferenceElsdale T, Bard J. Collagen substrata for studies on cell behavior. J Cell Biol 1972; 54: 626 – 637.en_US
dc.identifier.citedreferenceGuo Y‐P, Guo L‐H, Yao Y‐b, Ning C‐Q, Guo Y‐J. Magnetic mesoporous carbonated hydroxyapatite microspheres with hierarchical nanostructure for drug delivery systems. Chemical Communications. 2011; 47: 12215 – 12217.en_US
dc.identifier.citedreferenceIafisco M, Varoni E, Di Foggia M, Pietronave S, Fini M, Roveri N, et al. Conjugation of hydroxyapatite nanocrystals with human immunoglobulin G for nanomedical applications. Colloids and Surfaces B: Biointerfaces. 2012; 90: 1 – 7.en_US
dc.identifier.citedreferenceKolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, et al. An alginate‐based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 2011; 32: 65 – 74.en_US
dc.identifier.citedreferenceCasagrande L, Demarco FF, Zhang Z, Araujo FB, Shi S, Nör JE. Dentin‐derived BMP‐2 and odontoblast differentiation. J Dent Res. 2010; 89: 603 – 608.en_US
dc.identifier.citedreferenceRoosa SMM, Kemppainen JM, Moffitt EN, Krebsbach PH, Hollister SJ. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. Journal of Biomedical Materials Research Part A. 2010; 92A: 359 – 368.en_US
dc.identifier.citedreferenceCima LG, Vacanti JP, Vacanti C, Ingber D, Mooney D, Langer R. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng 1991; 113: 143 – 151.en_US
dc.identifier.citedreferenceDemarco FF, Casagrande L, Zhang Z, Dong Z, Tarquinio SB, Zeitlin BD, et al. Effects of morphogen and scaffold porogen on the differentiation of dental pulp stem cells. J Endod 2010; 36: 1805 – 1811.en_US
dc.identifier.citedreferenceYang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 2001; 7: 679 – 689.en_US
dc.identifier.citedreferenceDemarco FF, Conde MCM, Cavalcanti BN, Casagrande L, Sakai VT, Nör JE. Dental pulp tissue engineering. Braz Dent J 2011; 22: 3 – 14.en_US
dc.identifier.citedreferenceRowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20: 45 – 53.en_US
dc.identifier.citedreferenceNovikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO, Novikov LN. Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. J Biomed Mater Res A 2006; 77: 242 – 252.en_US
dc.identifier.citedreferenceTonnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm 2002; 28: 621 – 630.en_US
dc.identifier.citedreferenceSone T, Nagamori E, Ikeuchi T, Mizukami A, Takakura Y, Kajiyama S, et al. A novel gene delivery system in plants with calcium alginate micro‐beads. J Biosci Bioeng 2002; 94: 87 – 91.en_US
dc.identifier.citedreferenceDobie K, Smith G, Sloan AJ, Smith AJ. Effects of alginate hydrogels and TGF‐beta 1 on human dental pulp repair in vitro. Connect Tissue Res 2002; 43: 387 – 390.en_US
dc.identifier.citedreferenceChen YB, Bilgen B, Pareta RA, Myles AJ, Fenniri H, Ciombor DM, et al. Self‐Assembled Rosette Nanotube/Hydrogel Composites for Cartilage Tissue Engineering. Tissue Eng Part C Methods. 2010; 16: 1233 – 1243.en_US
dc.identifier.citedreferenceLee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci 2012; 37: 106 – 126.en_US
dc.identifier.citedreferenceWoo KM, Chen VJ, Ma PX. Nano‐fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 2003; 67: 531 – 537.en_US
dc.identifier.citedreferenceTuzlakoglu K, Bolgen N, Salgado AJ, Gomes ME, Piskin E, Reis RL. Nano‐ and micro‐fiber combined scaffolds: A new architecture for bone tissue engineering. J Mater Sci Mater Med 2005; 16: 1099 – 1104.en_US
dc.identifier.citedreferenceYan J, Wu G, Li L, Yu A, Sun X, Guan N. Synthesis of uniform TiO2 nanoparticles with egg albumen proteins as novel biotemplate. J Nanosci Nanotechnol. 2010; 10: 5767 – 5775.en_US
dc.identifier.citedreferenceFan T, Sun B, Gu J, Zhang D, Lau LWM. Biomorphic Al 2 O 3 fibers synthesized using cotton as bio‐templates. Script Mater 2005; 53: 893 – 897.en_US
dc.identifier.citedreferenceGonzalez P, Borrajo JP, Serra J, Chiussi S, Leon B, Martinez‐Fernandez J, et al. A new generation of bio‐derived ceramic materials for medical applications. J Biomed Mater Res A 2009; 88: 807 – 813.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.